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Abstract. Automatic classification of skin lesions remains a challenging task due to the insufficient 

training data, the morphological diversity of skin lesions, and the existence of artefacts and intrinsic 

cutaneous features in dermoscopy images. We propose a novel convolutional neural network termed 

CXception to tackle these challenges. CXception is constructed by plugging a coordinate attention 

(CA) block into the basic Xception architecture. CA block is a simple yet efficient attention 

mechanism, which can encode both inter-channel relationships and long-range dependencies that 

preserve precise positional information. Integrating CA into Xception enables the model to learn more 

expressive representations, hence improving the diagnostic performance of skin lesions effectively 

and significantly. The proposed method is supposed to handle the outliers that are not in the training 

set. We tackle this problem by using an efficient data-driven approach. Besides, this multi-

classification task comes with the problem of heavy class imbalance. We deal with this issue by 

adopting an optimized loss function called the class-weighted cross-entropy loss. The experimental 

results on the public benchmark dataset (ISIC 2019 dataset) demonstrate the superior performance of 

the proposed method relative to that of the baselines (backbone network and classical classification 

models) and state-of-the-art approaches. Code of the proposed method is available at 

https://github.com/shanpufang/skin-lesion-nine. 
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1. INTRODUCTION 

Automated skin lesion classification in dermoscopy images is still a challenging task due to the 

following three challenges:  

Challenge 1. Skin lesions vary significantly in many aspects, such as color, size, shape, and location in 

the image. Artefacts and intrinsic cutaneous features are present in dermoscopy images. The contrast 

between the lesion and its surrounding skin is low. 

Challenge 2. Task 1 of the ISIC 2019 Challenge (https://challenge2019.isic-archive.com) aims to 

classify nine categories of skin lesions, one of which (outlier class) is not presented in the training set.  

Challenge 3. As can be seen from Table 1, the class distributions of the dataset are highly imbalanced. 

To tackle Challenge 1, we construct a novel classification model called CXception, which has strong 

representation learning capability. In recent years, due to their powerful feature learning capabilities, 

convolutional neural networks (CNNs) have been widely used in the task of skin lesion classification. Yu et 

al. [1] utilized a fully convolutional residual network (FCRN) to segment skin lesions from dermoscopy 

images in the first stage and classify the lesions with a very deep residual network (DRN) in the second stage. 

In [2, 3, 4], the authors proposed a novel approach based on the ensemble of different CNN models for 

automatic skin cancer classification. Hosny et al. [5] applied transfer learning technique to the AlexNet 

model for application to skin lesion diagnosis. Although these methods perform well on skin lesion 

https://github.com/shanpufang/skin-lesion-nine
https://challenge2019.isic-archive.com/
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classification tasks, there are still some disadvantages: complex system [1], high computational cost [2, 3, 4], 

and insufficient capability of representing features [5]. Hence, the aim of this paper is to develop a CNN 

model with more powerful feature extraction capabilities while maintaining a low computational burden. 

Xception [6] has demonstrated remarkable performance on image classification tasks [7, 8]. It models the 

channel-wise and spatial feature interdependencies completely separately by using depthwise separable 

convolutions, successfully learning richer representations to obtain better classification results. It also 

introduces the residual connection into its architecture to accelerate the convergence speed and improve 

model performance. Moreover, Xception enjoys the advantages of low model complexity and low 

computational cost. Accordingly, we consider adopting Xception as the backbone network in this paper.  

Moreover, attention mechanisms have been proven helpful for a wide range of computer vision tasks  

[9, 10]. Integrating the attention module into CNN allows the network to emphasize meaningful features and 

suppress unnecessary ones, thereby improving the representational power of CNN. The most popular 

attention mechanisms are Squeeze-and-Excitation (SE) block [11], Bottleneck Attention Module (BAM) [12], 

Convolutional Block Attention Module (CBAM) [13], and CA block [14]. The SE block only models the 

inter-channel interdependencies while neglecting the positional information, which plays a vital role in 

capturing the structure of an object. BAM and CBAM encode the local position information but cannot 

capture the long-range dependencies that are critical for vision tasks. Stronger than them, the CA block can 

capture both the channel-wise feature dependencies and the long-range dependencies that preserve precise 

position information. Besides, the CA block is a computationally lightweight unit. It can bring significant 

performance improvements for CNNs at a slight additional computational cost. Thus, we suggest integrating 

a CA block into the Xception architecture to strengthen the representational power. 

We adopt an efficient data-driven approach to detect the outlier samples (see Challenge 2). We create 

an additional dataset as the outlier class (i.e., UNK). The images in this dataset are selected from the ISIC 

Archive (https://www.isic-archive.com), and we are certain that none of the images belong to any category 

of the training set. The additional dataset (195 dermoscopic images) includes images of lentigo NOS, lentigo 

simplex, lichenoid keratosis, angioma, and other benign skin lesions. We also try to address this issue by 

applying a thresholding approach. An image is regarded as an outlier when its highest predicted probability 

is lower than the threshold value. However, the thresholding approach performs slightly worse than the data-

driven approach, so we choose the data-driven approach for handling the outliers. 

We apply a class-weighted cross-entropy loss function to deal with the class imbalance problem 

mentioned in Challenge 3. In recent years, lots of efforts have been devoted to overcoming the problem. The 

most common methods are random under-sampling and random over-sampling. The two approaches bring 

slight improvements in performance but suffer from the loss of valuable information (random under-

sampling) and the problem of over-fitting (random over-sampling). Different from the two above methods 

that solve the problem from the perspective of data pre-processing, we balance the class distribution of the 

dataset more efficiently from the perspective of weighting the loss function. Specifically, we utilize a class-

weighted cross-entropy loss to train the model. Each class' loss is multiplied by its inverse frequency in this 

optimized loss function. Furthermore, we define a frequency factor k to control the degree of balance. The 

impact of different settings of k on the performance will be discussed in the experiment section. 

Contribution. Our main contribution is four-fold. 

1. We construct a novel convolutional neural network termed CXception to classify skin lesions 

accurately. CA block, which is an efficient attention mechanism, is integrated into the Xception architecture 

to obtain CXception. This block enables CXception to learn more powerful representations by capturing both 

the inter-channel information and precise positional information, boosting the diagnostic performance of skin 

lesions effectively and significantly.  

2. We propose an efficient data-driven approach to handle the outliers. Specifically, we create an 

additional dataset with external data and use the dataset as the outlier class. 

3. An optimized loss function called class-weighted cross-entropy loss is introduced to mitigate the 

class imbalance problem of the dataset. 

4. We conduct extensive experiments on the public benchmark dataset (ISIC 2019 dataset) and confirm 

that the proposed method outperforms the baselines (backbone network and classical classification models) 

and state-of-the-art approaches. 
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  2. METHOD  

2.1. CXception 

In this subsection, the proposed CXception model is described in detail. We start by introducing the 

design idea of CXception. The Inception-style models (Inception V1, Inception V2, Inception V3, Inception-

ResNet, etc.) can be considered as the stack of Inception modules. The typical Inception module first exploits 

the cross-channel correlations by performing 11 convolution and then maps the spatial cross-correlation via 

regular 2D convolution. The underlying assumption behind the typical Inception module is that mapping the 

spatial correlation and cross-channel correlation separately performs much better than mapping them 

simultaneously. The simplified Inception module utilizes only 33 convolution filters and abandons the 

pooling operation. An equivalent version of the simplified Inception module is obtained through further 

transformation: perform a unified 11 convolution followed by three 33 convolutions. Note that these three 

33 convolutions take part of the output channels of the unified 11 convolution as the input. Based on the 

above observations, a question naturally arises: can we make the stronger assumption that the 

interdependencies in spatial and channel dimensions are modelled separately completely. Motivated by this 

assumption, an “extreme” version of the Inception module first perform a 11 convolution to model the 

channel-wise feature dependencies and then captures the spatial interdependence of each output channel of 

the 11 convolution separately. It is observed that the “extreme” Inception module is highly similar to the 

depthwise separable convolution [6], but the latter enjoys stronger representation learning capability. Hence, 

the Inception modules in Inception V3 are replaced with depthwise separable convolutions to construct 

Xception with more powerful representations.  

To further strengthen the representational power of Xception, we consider integrating a CA block into 

Xception, and the obtained model is called CXception. We give a complete description of the proposed 

CXception architecture in Fig. 1. CXception consists of three parts (Entrance part, Middle part, and Exit part) 

and is structured into 14 modules (module 1-module 14). 

Entrance part (module 1 – module 4). We implement module 1 with two convolution layers and 

ReLU activation functions. The initial convolution layer comprises 32 convolutions of size 3×3 with stride 2. 

The second convolution layer comprises 64 convolutions of size 3×3.  Module 2, module 3, and module 4 

mainly consist of two depthwise separable convolution layers and a 3×3 max-pooling layer with stride 2, 

respectively. The depthwise separable convolution layers in module 2, module 3, and module 4 comprise 128, 

256, and 728 depthwise separable convolutions, respectively.  

Middle part (module 5 – module 12). Module 5 is repeated eight times in this part. We implement 

module 5 with three depthwise separable convolution layers and ReLU activation functions. Each depthwise 

separable convolution layer comprises 728 depthwise separable convolutions. 

Exit part (module 13 – module 14). Module 13 is mainly composed of two depthwise separable 

convolution layers and a 3×3 max-pooling layer with stride 2. The two depthwise separable convolution 

layers comprise 728 and 1,024 depthwise separable convolutions, respectively. Module 14 begins with a CA 

block and two depthwise separable convolution layers, followed by a regular convolution layer (kernel size 

of 3×3) and a global average pooling layer, end with a softmax layer. The two depthwise separable 

convolution layers comprise 1,536 and 2,048 depthwise separable convolutions, respectively. Note that the 

original fully connected layer is replaced with a 2D convolution layer, successfully reducing the total number 

of parameters in CXception. A CA block is plugged into this part to improve the representation quality 

effectively. 

Several other design strategies for the CXception architecture are listed below. 

– All depthwise separable convolutions in CXception are implemented with a kernel size of 3×3. 

Besides, the depth multiplier for all depthwise separable convolution layers is set to 1. 

– Skip connection is extensively used in CXception, except at the very beginning and end of the model. 

Skip connection can avoid the problem of vanishing gradients and mitigate the degradation problem. 

– We add a batch-normalization (BN) layer after each convolution layer and separable convolution 

layer. The BN layer is capable of solving the vanishing gradient problem, regularizing the model, and 

reducing the need for dropout.  
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Fig. 1 – The overall architecture of CXception. 

2.2. Coordinate attention block 

The execution process of the CA block (see Fig. 2) is divided into three stages: coordinate information 

extraction, coordinate attention generation, and re-weighting. Algorithm 1 provides the pseudo-code of CA 

in a PyTorch-like style. 

Coordinate information extraction. In the first stage, CA block applies two parallel 1D global 

pooling operations (Avgpool_h and Avgpool_w) to the input XℝC×H×W. Avgpool_h and Avgpool_w allow the 

CA block to encode long-range dependencies along one spatial direction and capture the precise positional 

information along the other spatial direction. The outputs of Avgpool_h and Avgpool_w can be formulated as 

_ ( ), _ ( )pool poolH Avgpool h X W Avgpool w X= = . (1) 

Here, Avgpool_h(·) is the global average pooling operation along the horizontal coordinate, and Avgpool_w(·) 

is the global average pooling operation along the vertical coordinate. Hpoolℝ
C×H×1 and Wpoolℝ

C×1×W are the 

output feature maps produced by Avgpool_h and Avgpool_w. 

Coordinate attention generation. In the second stage, we first perform a permutation operation of 

Hpool to obtain H'poolℝ
C×1×H. Next, we apply a concatenation operation to H'pool and Wpool along the spatial 

dimension, yielding HWℝC×1×(W+H). Then, we feed HW into a 1*1 convolution layer and a non-linear 

activation function. The output can be written as 

( )( )2 ( ),pool poolt Conv d Conca Perm H W =    . (2) 

In Eq. (2), Perm(·), Conca[:,:], Conv2d (·), and δ(·) represent the operations of permutation, concatenation 

along the spatial dimension, 1*1 convolution, and non-linear activation function, respectively. The 

intermediate output is tℝC/r×1×(W+H), which encodes the spatial information in horizontal and vertical 

directions. Here, r denotes the reduction ratio. 
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After that, we split t into two tensors (thℝC/r×1×H and twℝC/r×1×W) along the spatial dimension, and 

then perform 1*1 convolution and sigmoid activation on them separately, yielding 

( 2 ( )),   ( 2 ( ))h h w wT Conv d t T Conv d t=  =  . (3) 

Here, σ(·) denotes the sigmoid activation function. ThℝC×H×1 and TwℝC×1×W have the same channel 

dimension with the input X. 

At last, we expand Th and Tw into THℝC×H×W and TWℝC×H×W, which are regarded as the final 

attention weights. Note that the dimensions of TH and TW are the same as that of the input X. 

The benefits of this stage are as follows: (1) it takes full advantage of the position information 

extracted from the first stage; (2) it is also capable of modelling the channel-wise relationships; and (3) the 

transformation is simple and the computational cost is low. 

Re-weighting. We multiply the input X by the attention weights TH and TW to produce the final refined 

output X'ℝC×H×W. The output can be written as 

X'= X  TH  TW. (4) 

Here,  denotes the element-wise multiplication. 

 

 
Fig. 2 – Diagram of the coordinate attention (CA) block. 

2.3. Loss function 

The proposed class-weighted cross-entropy loss function is applied to mitigate the class imbalance 

problem for the multi-class classification task. We write this loss function Lcw as 

( log( ') (1 ) log(1 ')).cw iL t y y y y= −   + − −  (5) 

Here, y is the true label, and y' is the probability that an image belongs to the positive class. In the proposed 

loss function, each class' loss is multiplied by its corresponding inverse frequency to balance the class 

distribution on the ISIC 2019 dataset. The inverse frequency ti is defined as 

( / ) .k
i it T T=  (6) 
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Here, ti denotes the inverse frequency of class i, and k is a factor that controls the degree of balance.  

T represents the total number of training samples, and Ti is the number of samples of class i. We experiment 

with different values of k and the model performs best when k =1. 

 

Algorithm 1   Pseudo-code of the CA block in a PyTorch-like style. 
# X: input, C: number of channels, r: reduction ratio 
------------------------------------------- initialization ----------------------------------------- 
Avgpool_h = nn. AvgPool2d((1, None)) 
Avgpool_w = nn. AvgPool2d((None, 1)) 
Conv1 = nn.Conv2d(C, C/r, 1) 
Conv2 = nn.Conv2d(C/r, C, 1) 
------------------------------------------- forward pass ----------------------------------------- 
# coordinate information extraction, Eq. (1) 
Hpool = Avgpool_h(X) 
Wpool = Avgpool_w(X) 
# coordinate attention generation, Eq. (2) and Eq. (3) 
H'pool = Hpool .permute(0,1,3,2) 
HW = concatenate([H'pool, Wpool], dim=2) 
t = sigmoid(Conv1(HW)) 
th, tw = split(t, dim=2) 
Th = sigmoid(Conv2(th.permute(0,1,3,2))) 
Tw = sigmoid(Conv2(tw)) 
TH = expand(Th) 
TW = expand(Tw) 
# re-weighting, Eq. (4) 
X' = mul(X, TH, TW) 
return X' 

3. EXPERIMENTS 

3.1. Dataset and experimental setup 

The training dataset of the ISIC 2019 Challenge contains 25,331 dermoscopic images across nine 

categories: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK), 

benign keratosis (BKL), dermatofibroma (DF), vascular lesion (VASC), squamous cell carcinoma (SCC), 

and unknown (UNK). The images come from three datasets: HAM10000 [15], BCN_20000 [16], and MSK 

[17]. The additional dataset used as UNK (195 images) is added to the training set of ISIC 2019 Challenge to 

obtain the entire training dataset (25,526 images). We give the class distribution of the entire training set in 

Table 1 and observe that the number of samples in the nine categories is highly imbalanced. The official test 

set of the ISIC 2019 Challenge contains 8,238 dermoscopic images. However, the test set is not available to 

us, so we split the entire training dataset to 80% for training and 20% for testing. Note that we do not use a 

validation set. 

Table 1 

Class distribution of the nine categories in the entire training set 

Class name MEL NV BCC AK BKL DF VASC SCC UNK 

Number 4522 12875 3323 867 2624 239 253 628 195 

Ratio 0.177 0.504 0.130 0.034 0.103 0.009 0.010 0.025 0.008 

 

The experiments are carried out on an NVIDIA Tesla K40c card (12G memory). The proposed 

CXception model is implemented with Python based on the PyTorch library. In detail, we first implement the 

Xception model and CA block, and then insert the CA block into the Exit part of Xception to obtain 

CXception. To implement the proposed loss function, we multiply the formula of the cross-entropy loss by 

the inverse frequency ti. A detailed description of the training and testing phases is provided below. During 
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the training phase, the learning rate is initialized to 0.0001 (warm-up step of 201) for training CXception 

from scratch. The stochastic gradient descent (SGD) algorithm is used as the optimizer. We set the number 

of epochs to 100, the momentum to 0.9, the weight decay to 0.0001, and the batch size to 16. Several 

preprocessing techniques are applied to the images. First, the images are normalized by subtracting the mean 

RGB values ([123.68, 116.779, 103.939]) of the ImageNet dataset. Then, we resize the short side of the 

image to 450 pixels while keeping the aspect ratio. Next, the image is resized to 3/4 of its size using the 

bilinear interpolation algorithm. Last, we expand the dataset by using several popular data augmentation 

strategies (e.g., horizontal and vertical flipping). In the testing phase, to evaluate the proposed method 

quantitatively, we follow the widely adopted evaluation metrics: area under the curve (AUC), accuracy 

(ACC), precision (PR), recall (RE), specificity (SP), and F1-score (F1). These metrics can be formulated as: 

1

0

( ) / ( ),    / ( ),    / ( ),

/ ( ),    ( )d ,    1 2 / (2 ).pr pr pr

ACC TP TN TP FP TN FN PR TP TP FP SP TN TN FP

RE TP TP FN AUC t f f F TP TP FP FN

= + + + + = + = +

= + = = + +
 (7) 

Here, TN, FN, FP, and TP denote the number of true negatives, false negatives, false positives, and true 

positives, respectively. tpr is the true positive rate and fpr is the false positive rate. We calculate the mean 

values of these metrics (i.e., MAUC, MACC, MPR, MRE, MSP, and MF1) across the nine categories in the 

dataset. 

3.2. Ablation studies 

In this section, we conduct comprehensive experiments and ablation studies to demonstrate the 

effectiveness of our proposed strategies: the integration of CA block into Xception, the class-weighted cross-

entropy loss function, and the data-driven approach. 

CA block. We first verify the effect of the CA block on classification performance. Extensive 

experiments are performed on the following models: baseline network (Xception), SE-integrated network 

(Xception+SE), BAM-integrated network (Xception+BAM), CBAM-integrated network (Xception+CBAM), 

and CA-integrated network (CXception). The experimental results are summarized in Table 2. CXception 

achieves better performance than SE-integrated network, BAM-integrated network, and CBAM-integrated 

network, demonstrating the superiority of the CA block over SE block, BAM and CBAM. This can be 

explained by the fact that the SE block only models the inter-channel interdependencies while neglecting the 

positional information. BAM and CBAM encode the local position information but cannot capture the long-

range dependencies. Powerful than them, the CA block can capture both the channel-wise feature 

dependencies and the long-range dependencies that preserve precise position information. Accordingly, we 

choose to integrate the CA block into the Xception model. We also experiment with different placements of 

CA in Xception and find that the model works best when CA is integrated into the end of Xception. 

Table 2 

Result comparisons of Xception, SE-integrated network,  

BAM-integrated network, CBAM-integrated network, and CA-integrated network 

Model MAUC MRE MPR MSP MACC MF1 

Xception 0.931 0.822 0.966 0.971 0.958 0.815 

Xception+BAM 0.934 0.824 0.971 0.972 0.960 0.819 

Xception+CBAM 0.935 0.825 0.973 0.974 0.962 0.821 

Xception+SE  0.937 0.827 0.975 0.976 0.964 0.823 

CXception 0.942 0.833 0.978 0.981 0.971 0.826 

 

Class balancing. We tackle the class imbalance problem with three different approaches: random 

under-sampling (the first experiment), random over-sampling (the second experiment), and the proposed 

class-weighted cross-entropy loss function (the third experiment). In the first and second experiments, we 

train CXception models on the datasets using the random under-sampling method and random over-sampling 

method, respectively. In the third experiment, we train the CXception model with the proposed class-

weighted cross-entropy loss rather than the standard cross-entropy loss. The experimental results are listed in 
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Table 3. We can clearly see that the model trained with the proposed loss function achieves consistent 

improvements on all metrics over the other models, demonstrating the effectiveness of this loss function in 

handling the class imbalance problem. The proposed loss function down-weights the loss assigned to the 

majority classes and up-weights the loss assigned to the minority class, successfully mitigating the negative 

influence of class imbalance on the multi-classification task. To further study the impact of different settings 

of k in Eq. (6) on the model performance, we experiment with different values of k (i.e., 1, 2, 3, and 4) and 

see the performance change. Results are shown in Table 4, and we observe that the model yields the best 

results when k =1. Finally, the value of k is set to 1 in this work. 

Table 3 

Result comparisons of CXception models under different class balancing strategies 

Methods MAUC MRE MPR MSP MACC MF1 

Without class balancing 0.930 0.819 0.967 0.969 0.958 0.813 

Under-sampling 0.934 0.820 0.972 0.973 0.961 0.816 

Over-sampling  0.933 0.823 0.974 0.972 0.960 0.814 

Proposed loss function  0.942 0.833 0.978 0.981 0.971 0.826 

Table 4 

Result comparisons of CXception models under different settings of k 

k MAUC MRE MPR MSP MACC MF1 

1 0.942 0.833 0.978 0.981 0.971 0.826 

2 0.938 0.830 0.973 0.977 0.962 0.819 

3 0.934 0.827 0.967 0.974 0.958 0.814 

4 0.933 0.825 0.966 0.972 0.957 0.811 

 

Data-driven approach. We apply two different methods to handle the outliers. One is the data-driven 

approach, and the other is the thresholding approach. In the thresholding approach, a probability threshold is 

set in the final predicting phase. We experiment with different threshold values (i.e., 0.3, 0.35, and 0.4) and 

find that the model achieves the best result when the threshold value is set to 0.35. Experimental results are 

presented in Table 5. We observe that the model using the data-driven approach outperforms the model using 

the thresholding approach, showing the effectiveness of the data-driven approach in handling the outlier 

class. Finally, the data-driven approach is adopted to deal with the outlier problem. 

Table 5 

Result comparisons of CXception models under different approaches for handling the outliers 

Methods MAUC MRE MPR MSP MACC MF1 

Thresholding 0.934 0.826 0.967 0.974 0.960 0.818 

Data-driven  0.942 0.833 0.978 0.981 0.971 0.826 

3.3. Comparison with the baselines and state-of-the-art methods 

To evaluate the proposed method, we compare CXception with the baselines (backbone network and 

classical classification models) and state-of-the-art algorithms ([18], [19], and [20]). The baselines include: 

(1) ResNet-101, (2) ResNeXt-101, (3) Vgg-16, (4) Vgg-19, (5) Inception-v3, (6) Inception-ResNet-v2,  

(7) SE-ResNeXt-50, (8) SE-ResNeXt-101, (9) SE-ResNet-50, (10) SE-ResNet-101, and (11) Xception 

(backbone network). As shown in Table 6, we observe significant improvements of the proposed CXception 

model over the baselines and state-of-the-art methods, demonstrating the superiority of our method on this 

skin lesion classification task. The performance gains can be attributed to three main reasons: (1) the 

integration of CA block into Xception enables the model to encode both the inter-channel information and 

the precise positional information for learning more powerful representations; (2) the class-weighted cross-

entropy loss function down-weights the loss assigned to the majority classes (e.g., NV) and up-weights the 

loss assigned to the minority class (e.g., DF), effectively alleviating the class imbalance problem; and (3) we 

handle the outlier class with the efficient data-driven approach, leading to the improvement in diagnostic 

performance. 
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To further evaluate our method, the model complexity analysis of CXception and the baselines is 

provided. The model parameters, testing time per image, and Flops of these models are listed in Table 7. As 

we can see, the Flops and model parameters of the baselines are higher than CXception. Although the testing 

time per image of ResNet-101 is slightly lower than our model, our model achieves much better results than 

ResNet-101. In a brief conclusion, our method boosts the classification performance significantly while 

maintaining a low computational cost. We also plot the training loss vs. epoch graph of the proposed 

CXception model, see Fig. 3. 

Table 6 

Result comparisons of the proposed CXception model with the baselines and state-of-the-art methods 

Methods MAUC MRE MPR MSP MACC MF1 

ResNet-101 0.899 0.793 0.937 0.937 0.928 0.784 

ResNeXt-101 0.903 0.801 0.940 0.938 0.931 0.787 

Vgg-16 0.854 0.753 0.891 0.889 0.880 0.739 

Vgg-19 0.862 0.764 0.897 0.894 0.882 0.746 

Inception-V3 0.907 0.799 0.949 0.946 0.934 0.793 

Inception-ResNet-v2 0.886 0.775 0.924 0.923 0.913 0.770 

SE-ResNeXt-50 0.898 0.791 0.935 0.937 0.925 0.782 

SE-ResNeXt-101 0.894 0.786 0.931 0.930 0.920 0.779 

SE-ResNet-50 0.891 0.782 0.928 0.926 0.916 0.775 

SE-ResNet-101 0.883 0.773 0.920 0.921 0.911 0.766 

Xception 0.910 0.814 0.946 0.952 0.939 0.803 

Ref. [18] - 0.798 0.804 0.970 0.949 0.801 

Ref. [19] - - 0.963 - 0.963 - 

Ref. [20] 0.910 0.650 - - 0.950 0.640 

CXception 0.942 0.833 0.978 0.981 0.971 0.826 

Table 7 

Model parameters, testing time per image, and Flops of the proposed CXception model and the baselines 

Methods Model parameters Flops Testing time per image /(ms) 

ResNet-101 42518601 25263206976 39.3 

ResNeXt-101 42147145 25817720640 76.2 

Vgg-16 33634121 46180163712 43.8 

Vgg-19 38943817 58669471872 45.3 

Inception-V3 24869682 10528293008 46.8 

Inception-ResNet-v2 54320297 22456773728 47.0 

SE-ResNeXt-50 25529337 13620662256 50.6 

SE-ResNeXt-101 46924857 25850967088 79.2 

SE-ResNet-50 26041417 13166089280 42.4 

SE-ResNet-101 47261769 25296418880 49.7 

Xception 14516945 10060939178 39.1 

CXception 14616546 10129967881 39.7 

 

 
Fig. 3 – The training loss vs. epoch graph of the CXception model. 
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4. CONCLUSION 

In this paper, we propose a novel convolutional neural network called CXception to diagnose skin 

lesions accurately. We train the CXception model with a class-weighted cross-entropy loss function to 

handle the imbalanced data. We introduce an efficient data-driven approach to deal with the outlier class. 

The proposed method is extensively evaluated on the public benchmark dataset. The experimental results 

demonstrate the superior performance of the proposed method relative to that of the baselines and state-of-

the-art approaches.  
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