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Abstract. Path planning of the UAV is one of the complex optimization problems, due to the model 

complexity and a high number of constraints.  In addition, the flyability of path is also a requirement 

for 3D UAV path planning in practical environment.  Evolutionary algorithms are effective solutions 

to solve complex optimization problems with multiple constraints. Regarding the local adjustment 

characteristic of cubic B-spline curves and crossover recombination in differential evolution 

algorithm, we design and implement a crossover recombination based global-best brain storm 

optimization (GBSO) algorithm to solve multi-constraints 3D path planning problem with considering 

the continuous curvature of path. The cost function is formulated includes the safety, economy and 

flyability, where the characteristic polygon vertices of a cubic B-spline curve representing the path 

are taken as the optimization variables.  Simulation results and comparison analysis demonstrate that 

the proposed method has a better performance than GBSO, SHADE and other compared algorithms 

for UAV path planning. 

Key words: unmanned aerial vehicle (UAV), path planning, global-best brain storm optimization 

algorithm, crossover recombination. 

1. INTRODUCTION 

In numerous areas, autonomous systems are replacing manual operations to improve the efficiency and 

cost-effectiveness. Due to the advantages of simplicity, low cost, safety, flexibility and reliability, unmanned 

aerial vehicles (UAVs) are widely used in military and civilian applications [1-3]. Especially in dangerous, 

remote and harsh environments, man-machine systems must be replaced by UAVs. The UAV path planning 

is a fundamental issue in UAV maneuvering and control, as it directly affects the performance of UAV 

autonomy [4]. It aims to find the optimal or near-optimal solution in 3D space, which meets the mission 

requirements under various environment and flight conditions [5]. 

A significant amount of research efforts have focused on finding a collision free and optimal path for 

UAV to avoid risks. The traditional methods, such as visibility graph, rapidly-exploring random tree, 

probabilistic roadmap, dijsktra’s algorithm, A* algorithm, D* algorithm, etc. These methods provide 

solutions for generating optimal paths in the geometrical, but the paths without considering the motion 

constraints of UAV and cannot be used in practical applications [6]. Moreover, these methods are relatively 

slow speed and execution [7].   

For solving optimization problems, the dynamic programming (DP) is one traditional solution [8]. 

However, the DP depends heavily on the specificity of problem and will be slow with the gradual increase 

scale of problem. With development of science, the meta-heuristic algorithms have received great attention. 

The discrete and improved bat algorithm (DaIBA) was proposed for solving vehicle routing problem (VRP) 

with asymmetric variable costs, forbidden roads and cost constraints [9]. The [10] provided us a good 

solution to solve the vehicle tours with time window (VRPTW) problem by adapting meta-heuristic methods. 

Finding the optimal path is a nondeterministic polynomial (NP) time complete problem, where the 
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complexity increases rapidly with the dimension size. As we all know, the meta-heuristic algorithms are 

effective solutions to solve the NP-complete problems [11, 12]. These include the genetic algorithm (GA), 

particle swarm optimization, differential evolution (DE), ant colony optimization, design GA, evolutionary 

algorithm and combination of these algorithms. The studies show that enhances the local search and 

exploitation ability of algorithm are beneficial for path planning in complex environment.  

In addition to the traditional heuristic algorithms, advanced nature-inspired algorithms have also 

received great attention in the field of UAV path planning. One typical example is the brain storm 

optimization (BSO), which has two major operators: convergent operator and divergent operator [13]. It 

mainly draws on the core ideas of the brainstorming process: judgment, assumptions and cross-reference. 

Through a large number of assumptions and conjectures, there is a great possibility that an excellent solution 

can be obtained in the end. However, BSO suffers from the problem of trapping in local optimum and has a 

slow convergent speed [14]. Research efforts have been dedicated on improvement of BSO in terms of 

clustering, creation and selection strategies [15]. One of them is the global-best brain storm optimization 

(GBSO), which is an algorithm to improve the BSO performance using multiple modifications [16]. The 

GBSO adopts fitness-based grouping, per-variable updating and the global-best guidance concept originally 

proposed in PSO to improve the performance of the original BSO. It is worth mentioning that the per-

variable updating generates new individual one problem variable at a time rather than all problem variables 

in one step. The per-variable updating can enhance the local search ability of algorithm, which has the nature 

advantage for solving UAV path planning problem. Based the fact that the object of crossover recombination 

is also a single variable, the crossover recombination is suitable for GBSO. To improve the local search and 

exploitation ability of GBSO, the crossover recombination in DE [17] is borrowed. 

Continuous path curvature is also a basic requirement for UAV path planning. Comparing to the other 

existing methods for path representation, such as the Dubins curve Dubins path, Bezier curves and 

Pythagorean Hodograph curves [18], the cubic B-spline curve has incomparable advantages for path 

representation. It can achieve the curvature continuity with the lowest (cubic) degree. More importantly, it 

enables the local adjustment of a curve. When one control point in the B-spline curve is adjusted, only the 

segment associated with this control point of the curve is changed, while the other segments of the curve 

remains unchanged. This characteristic of local shape modification provided by the cubic B-spline makes it 

easier for the path to avoid obstacles and risks and meet the requirements of the physical characteristics of 

UAV flight.  

In this work, our motivation is to solve 3D UAV path planning in complex environment. The main 

contributions of our paper can be summarized as follows:  

(1) The 3D UAV path planning is formulated as a constrained complex optimization problem with 

consideration of the kinematics and dynamic constraints for UAV. The cost function is formulated includes 

the safety and economy, where the characteristic polygon vertices of cubic B-spline curve representing the 

path are taken as the optimization variables.  

(2) A crossover recombination-based global-best brain storm optimization (GBSO-CR) algorithm is 

proposed. The crossover recombination in DE is borrowed to enhance the local search and exploitation 

ability of original GBSO.  

(3) The UAV path planning problem is solved by GBSO-CR. Numerical simulations have illustrated 

that GBSO-CR is competitive compared with the GBSO and other compared algorithms.  

The rest of this paper is organized as follows. Sections 2 give a brief introduction of the mathematical 

problem formulation and constraint handling method. In Section 3, the GBSO-CR algorithm for UAV path 

planning is presented. The experimental results and discussion are presented in Section 4. Finally, the 

relevant conclusions and directions for future work are introduced in Section 5. 

2. COST FUNCTION 

In this paper, the point mass model of UAV is used for path planning. The main objective of UAV path 

planning is to search a safe, economic and flyable path to the destination with a minimal cost. This problem 

can be described as: 
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ps and pf are the start and target points of the specific task, and ri is the i-th segment of a specific path; c and 

θ are the spatial curvature and climb (or dive) angle; □ denotes the obstacles and no-fly areas; (xl, yl, zl) and 

(xu, yu, zu) are the lower and upper boundaries of the search area. 

The cost function is formulated as the sum of the threat and path length cost. The safety of a path is the 

major priority of UAV path planning. Furthermore, the flyability of a path is also considered as a constraint 

to 3D path planning. It contains the terrain, the maximal curvature and maximal climb (or dive) angle. 

Therefore, the UAV path planning problem can be formulated as a constrained single objective optimization 

problem with the following cost function:  
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The UAV path is represented by the cubic B-spine curve, whose characteristic polygon vertices are 

taken as the optimization variables. For a specific path R (ri) (i =1,2,…N), ri(t) is the i-th segment of R. The 

ri(t) is generated by a predetermined number of three-dimensional points (xi , yi , zi) using cubic B-spline 

curves. Then, the fcost of R can be obtained by equation (2). The purpose of path optimization is to find the 

path with the minimum cost function while satisfying the constraints. C1
safe and C2

safe are the functions to 

prevent the UAV from being detected and destroyed, respectively. Ceconomic is the length of UAV path to find 

a path with a shorter length and lower altitude by reducing the energy consumption. The G1
flyably, G2

flyably and 

G3
flyably are constraints of the UAV path planning. G1

flyably is the function to prevent the i-th segment path ri(t) 

of the path from collision with the terrain, G2
flyably and G3

flyably are the functions ensuring a path to satisfy the 

kinematic and dynamic constraints for UAV flight. 

2.1. Safety 

In the hostile environment, the safety is one primary objective for UAV path planning. This paper 

adopts a simple version of the radar and artillery model to assess the safety factor for UAV path planning 

[18].  

2.1.1. Minimal risk of radar detection 

The mathematical model of radar as follows: 
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f i
1 is the cost function of radar detection for the i-th segment of a path, δk and d k

PRD are the inherent 

parameters of the k-th radar, and di,k is the distance between the i-th segment of a path and the k-th radar. The 

UAV closer to the radar, the higher probability of the UAV will be detected. 
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2.1.2. Minimal risk of destroyed 

The mathematical model of artillery as follows: 
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f i
2 is the cost function associated with the risk of the i-th segment of a path, Rm and dm

PK are the inherent 

parameters of the m-th missile, and di,m is the distance between the i-th segment of a path and the m-th 

missile. 

2.2. Economy 

A path with a shorter length and lower altitude is more economic than that with a longer length and 

higher altitude.  
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f i
3 is the cost function associated with the length of the i-th segment of a path. 

2.3. Flyable 

If a path satisfies all the constraints simultaneously, it is regarded as a flyable path. Otherwise, it is an 

unflyable path.  

2.3.1. Terrain constraint 

An approximate cell decomposition of the terrain is adopted to convert the 3D space into a 2D matrix, 

which is named the map matrix [19]. It can discrete the continuous terrain dividing the 3D space into a grid. 

The terrain belongs to same grid has the same terrain height. 
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 represents the terrain constraint for the i-th segment of a path. Hmap(xi,yi) is the terrain height at point (xi,yi) 

obtained from the terrain map matrix, and hmin is the minimum safety value of the flight path above the 

terrain. 

2.3.2. Maximal curvature constraint 
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gi
2 is the curvature constraint for the i-th segment of a path, ci and cmax are the approximate curvature for the 

i-th segment of a path and the maximum curvature constraint for UAV flight, respectively. 
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2.3.3. Maximal climb (or dive) angle constraint 
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3 is the climb (or dive) angle constraint for the i-th segment of a path, and θmax is the maximum climb(or 

dive) angle constraint of a path for UAV flight. The constraints are handled by the improved ɛ level 

comparison. 

2.4. Constraint Handling 

In this paper, the path planning is formulated as a complex optimization problem with terrain, 

maximum curvature and maximum climb (or dive) angle constraints. The methods of constraint handling as 

follow [20]. For a specific ε, an individual ina is considered better than inb according to the equation (9). 
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f and λ are the objective function and the total overall constraint violation value, respectively. The update 

rules of ε are as equation (10). 
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ε(gen) is the value of ε and rk is the proportion of feasible solutions in the generation gen; αρ is the top ρ-th 

overall constraint violation of all individuals in the initial population; Tc is the control parameter. When the 

number of function evaluations (FEs) reaches Tc, the value of ε will be set as 0. Note that the ρ is set 25, β is 

set 0.8 and other parameters are set as suggested value in [20]. Thus, individuals can be evaluated by the cost 

function and constraint handling method. 

3. GBSO-CR FOR UAV PATH PLANNING 

Since the NP-hardness of UAV path planning, it is difficult to obtain the optimal solution using 

conventional mathematical optimization techniques. Therefore, we propose a novel GBSO-CR evolutionary 

framework (Table 1). For 3D path planning in threat environment, the more powerful local search and 

exploitation ability of algorithm the better for finding a more safe and economic solution. In order to solve 

the UAV path planning problem effectively, the crossover recombination is borrowed in GBSO-CR. The 

crossover recombination (Table 2) has the great potential to solve path planning problem, as it can 

interchange the infeasible waypoints with the feasible waypoints of other individual to avoid obstacles and 

risks. Further, the characteristic of local adjustment in the B-spline curve is also compatible with the purpose 

of using crossover recombination for path planning. The details of proposed GBSO-CR for UAV path 

planning are as follows: Firstly, randomly initialize NP individuals (xi , yi) within (xl , yl) and (xu , yu). Based 

on the environment and map modeling, the terrain heights of discrete position points are extracted from the 

map matrix [19]. The individuals are initially generated based on the terrain height, then initial height (zi) of 

a path can be obtained, which must be higher than the terrain height. The ri(t) is generated by a 

predetermined number of three-dimensional points (xi, yi , zi) using cubic B-spline curves. Secondly, the NP 

individuals are sent to the iteration circulation of GBSO-CR algorithm. Next, new individuals are generated 
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by proposed algorithm for finding better individuals. Finally, the best individual will be selected according to 

the cost function of each individual (equations (2−8)) and the ε level comparison (equation (9)).  

Table 1 

Procedure of the GBSO-CR algorithm 

Input: NP, m, ponecluster , ponecenter , ptwocenters , CR, (xl, yl, zl) and (xu, yu, zu) 
Output: the best individual 

Randomly initialize NP individuals; 

Generate UAV paths using the characteristic polygon vertices of B-spline curve in NP individuals; 

Evaluate NP paths (equations (2−8))and find the best individual GlobalBest; 

While (Currentiter≤Maxiter) do 

Cluster NP into m groups by the cost function fcost and equation (9); 

For idx =1 to NP do 

for j =1 to D do 

If rand < ponecluster  then 

Randomly select a subgroup group{gr}; 

if  rand < ponecenter  

_ ( ) ( , )Donor idx j center gr j= ;  

else 

Randomly select an individual k in group{gr}; 

 _ ( ) ( , )Donor idx j group gr k j= ;  

end if 

Else  

Randomly select two clusters r1 and r2 (r1 ≠r2);  

Randomly select two individual r3 and r4 (r3 ≠r4); 

         r = rand; 

                         if rand < ptwocenter  

)_ ( ) ( 1, ) 2((1 ) ,Donor idx j r center r j r center r j=  + −  ; 

else 

    )_ ( ) 1 3, (( ) (1 ) 2 4,Donor idx j group r r j r group r r j= + −  ; 

Endif 

endIf 

            endfor 

ENDFor 

Get Trial_idx use crossover recombination (Table 2); 

1
1ξ rand

MaxIterations

MaxIterations CurrentIteratione step
−

− +=    

_ _ ξ ( ,0)New idx Trial idx N= +   ; 

Generate UAV paths using the characteristic polygon vertices of B-spline curves in New_idx; 

Evaluate the new path by equations (2−8) and equation (9); 

Update NP individuals and GlobalBest; 

Update ε using equation (10); 

ENDWhile 

Return the best individual 

Table 2 

Procedure of crossover recombination 

Input: D, CR, Donor_idx and GlobalBest 
Output: Trial_idx 

( )_ rand 1,G index D CR=  ; (A< B, returns the logical operation value of whether ‘A’ is less than ‘B’) 

_ _ 0.5D index G index = ; 

_ _ _ _Trial idx Donor idx D index GlobalBest G index= +  (“ ” is Hadamard product). 
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4. SIMULATION RESULTS AND DISCUSSIONS 

In this section, we apply our proposed GBSO-CR to solve the UAV path planning in complex 

environment. The prototype system of UAV path planning was implemented with MATLAB (R2021a) based 

on the proposed method. To prove the effectiveness of the proposed, comparison analysis was conducted for 

the five algorithms using the platform “PlatEMO” [21], i.e., GA, DE, Success-history based parameter 

adaptation for differential evolution algorithm (SHADE), GBSO, and GBSO-CR. The download link of the 

programs and example can be obtained from the URL: https://www.researchgate.net/project/GBSO-CR-for-

path-planning. 

The mission area of the UAV was 1000 km long, 600 km wide and 0.5 km high with the given terrain 

and threat areas. The threat areas were indicated by circles in 2D and cylinders in 3D. The number of 

waypoints was set to 13, then the number of optimization variables was 39 (3D points). The number of 

optimization variables was set by the user. For finding a flyable path for UAV, the maximum curvature cmax 

was set as 1/30, and the maximum climb (or dive) angle θmax was 30 degree. The cmax and the θmax depend on 

the performance of UAV. 

The purpose of the simulation scenario is to test whether an algorithm can find a flyable UAV path 

from starting point to the target point with economic and lower risk. The detailed parameters of the 

simulation scenario are listed in Table 3 [22]. Table 4 shows the parameter settings of each algorithm for the 

simulation scenario. Those values were set according to the recommended value of each algorithm. The 

crossover rate (CR) denotes the contribution rate of global-best individuals to the generation of new 

individuals and the recommended value of CR is [0, 0.2] [23]. Then 0.1 was adopted in the proposed GBSO-

CR algorithm for balancing the search capability and the convergence speed. For comparison analysis, 25 

independent runs were executed for each algorithm. 

Table 3 

Parameters of the scenario 

Category Location and threat radius (km) 

Rader 1 [(260, 370), 80] 

Rader 2 [(450, 90), 80] 

Rader 3 [(800, 230), 100] 

Artillery 1 [(305, 196), 100] 

Artillery 2 [(800, 400), 80] 

No-fly zone 1 [(350, 500), 100] 

No-fly zone 2 [(600, 300), 60] 

Table 4 

Algorithm parameters for comparison 

Algorithm Related parameters 

GA NP =100, Pc =10, disC =20, proM =1, disM =1 

DE NP =25, CR =1, F=0.5 

SHADE NP =100 

GBSO NP =25, m =5, ponecluster = 0.8, ponecenter = 0.4, ptwocenters = 0.5 

GBSO-CR NP =25, m =5, CR= 0.1, ponecluster = 0.8, ponecenter = 0.4, ptwocenters = 0.5 

Stopping criterion  the number of function evaluations is 20000 

 

The cost function, runtime and feasible rate (f.rate) of the results were listed to verify the effectiveness 

of the proposed algorithm. The feasible rate is defined by 

   /f rate number of feasible solutions NP =  (11) 

number of feasible solutions denotes the number of solutions that meet the terrain constraint, the spatial 

curvature and climb (or dive) angle constraints for UAV flight at the end of each run, and NP is the number 

of population. The f.rate can measure the number of flyable paths found by the algorithm. The higher value 

of feasible rate, the better performance of the algorithm is. To ensure a statistically sound conclusion, a 

https://www.researchgate.net/project/GBSO-CR-for-path-planning
https://www.researchgate.net/project/GBSO-CR-for-path-planning
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Wilcoxon rank-sum test with a 0.05 significance level was used to show the statistically significant 

differences in the performance results. Note that the symbols “+,” “−,”and “~” respectively, indicate the 

compared algorithms perform significantly better, worse, and similarly when compared with GBSO-CR for 

solving the path planning problems. 

There are safe spaces between the “Artillery 1” and “Radar 1”, “Artillery 1” and “Radar 2” from the 

starting point to the target point. The optimal UAV paths in 2D and 3D obtained by the five algorithms are 

shown in Fig. 1 and Fig.2. 

 

 
 

Fig. 1 – The 2D paths obtained by the five algorithms. Fig. 2 – The 3D paths obtained by the five algorithms. 

As shown in figures, the paths are gathered in the reserved safe space. All the algorithms can find 

feasible paths that meet the requirements of the terrain, spatial curvature and climb (or dive) angle 

constraints for UAV. The statistical results by the five algorithms during 25 runs are presented in Table 5. 

Table 5 

The fcost , runtime and feasible rate of the five algorithms 

 Algorithm GA DE SHADE GBSO GBSO-CR 

fcost 

mean 1093.5 1409.2 1087.6 1070.4 1065.3 

std 25.4 439.0 77.6 8.70 3.85 

Rank sum test - - - -  

runtime(s) 

mean 11.28 11.53 11.29 15.28 13.06 

std 0.70 0.58 0.59 1.08 0.62 

Rank sum test + + + ~  

f.rate 

mean 1.000 0.985 1.000 0.982 0.995 

std 0 0.034 0 0.020 0.017 

Rank sum test ~ ~ ~ -  

 

As shown in Table 5, several observations can be obtained: 

(i) The ascending sequence in terms of fcost is GBSO-CR < GBSO < GA < SHADE < DE, the GBSO-

CR had the smallest value 1065.3. It demonstrating that the GBSO-CR has capable of finding the best path 

with short length and low risk among compared algorithms. The result of GBSO-CR (1065.3) better than 

GBSO (1070.4) showing that the crossover recombination is capable of improving search ability of GBSO. 

Moreover, the standard deviation of GBSO-CR which is 3.85 is also smaller than those of the other 

algorithms. This further demonstrates the high robustness of GBSO-CR. 

(ii) In terms of runtime, the GBSO and GBSO-CR have worse results, since the per-variable updates 

generate one problem variable at a time rather than all variables in one step. The per-variable update has the 

nature advantage of improving local search ability, but it brings longer running time. With the development 

of computer technology, the runtime of algorithm will be shorter. 
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(iii) It can be seen that the best result in terms of f.rate is achieved by GA and SHADE. However, the 

fcost of GA and SHADE are extremely worse than that of GBSO-CR. The value of GBSO-CR (0.995) better 

than GBSO (0.982) demonstrating the GBSO-CR has higher search ability. In other hand, the results 

demonstrating that the ε level comparison is effective to solve this constrained 3D UAV path planning 

optimization problem. 

Additionally, in order to perform convergence analysis of the GBSO-CR, the values of fcost by the five 

algorithms are shown in Fig. 3. The y-axis of cost curve is the best individual found when corresponding to 

the x-axis number of evaluations. As shown Fig. 3, the value of the cost function may increase with the 

number of iterations instead of decreasing all the time. For a specific ε, an individual with larger fcost and 

small constraint value is better than that with smaller fcost and a larger constraint value. 

 

 

Fig. 3 – The fcost obtained by the five algorithms. 

For this comparison, the GBSO-CR has a fast convergence rate, and it can find a better result using a 

smaller number of evaluations. Combined Fig. 3 with Table 5, it shows that GBSO-CR is superior to those of 

the other four algorithms in terms of convergence rate, the lowest average and standard deviation value of 
its solutions. 

5. CONCLUSIONS 

This paper presents a new GBSO-CR algorithm for constrained 3D UAV path planning. This GBSO-

CR combines crossover recombination with GBSO algorithm for improving search capability and robustness 

of GBSO. The cost function is designed according to the safety, economy and flyability of 3D UAV path. 

The cubic B-spline curve is used to represent UAV paths to ensure the path smoothness. Simulation results 

and comparison analysis demonstrate that the proposed GBSO-CR is significantly superior to GBSO and 

compared algorithms for UAV path planning. In future research work, the proposed algorithm will be 

combined with advanced artificial intelligence techniques, such as machine learning, neural network and 

fuzzy optimization, and to study the path planning problem for multiple UAVs with multi-objectives 

optimization. 
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