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Abstract. Climate data contains much time series set with unknown and spatial series set consisting 

of longitude and latitude, therefore, climate data can be considered to be a kind of typical time series 

data. Climate data has lots of rich information, through exploring those hidden relation pattern 

between time variables and spatial variables within climate data, the hidden internal regular of climate 

change can be exposed for providing some insights for predicting climate evolution. Whereas, the 

complex components and multi-dimensional characteristic of climate data bring a challenge for 

relation patterns extraction, moreover, the interference of redundant information, e.g., noise, hidden in 

climate data also creates a lot of trouble for relation patterns extraction. To address this, this paper 

proposed a long short-term memory network method for relation patterns extraction in climate data. 

Experiment results on the ECMWF climate dataset show that the proposed method not only wins 

competitors in extracted accuracy of relation patterns, but also can capture those advanced relation 

patterns by filtering the non-eigenvalue information in climate data. We find that these captured 

trajectories of climate present not only a cyclical continuity within an annual, but also they have a 

local smoothness in the four seasons. Moreover, these captured trajectories of climate are more 

affected  by time series than spatial series does, implying that for the time series and spatial series, the 

main factor affecting the evolution of climate is time, followed by spatial location. 
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1. INTRODUCTION 

Climate data is a kind of typical time series data, since it contains a lot of time series with unknown. 

Not only that, climate data has to do with spatial location consisting of longitude and latitude, so climate data 

has also spatial characteristic. Climate data consists of these complex time series and spatial series, which 

has lots of rich and valuable information. Through analyzing those relation patterns between time variables 

and spatial variables within climate data, we can explore the hidden internal regular of climate change, 

providing some insights for predicting climate evolution. Clearly, the composition components of climate 

data are really complex and multi-dimension, so that it becomes difficulty for relation patterns extraction 

between variables using manual manner, usually, machine intelligence methods are considered. 

Unfortunately, multi-dimensional characteristics of climate data are challenging the learning ability of 

machine intelligence methods, meanwhile, the interference of redundant information (e.g., noise) hidden in 

climate data creates much trouble for machine intelligence methods. As such, it is a tough task for relation 

patterns extraction from climate data. Some efforts for relation patterns extraction have been obtained. 

Currently, common methods are pattern extraction-based methods, feature selection-based methods and deep 

network architectures-based methods, which are capability of capturing relation between variables within 

data and learning those meaningful representations from complicated data. For (i) pattern extraction-based 

methods, e.g., these methods in [1−4], although such methods can gain valuable relation patterns from 

original data, they have to predefine some pattern rules according to those extracted patterns in tasks. In 

application, the operation of predefined rules is difficult to be performed. Indeed, those data similar to 

climate data are difficult for us to predefine those rules for relation patterns extraction because of the 

complexity and multi-dimensionality of those variables within data. 
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(ii) Feature selection-based methods, e.g., these instances implemented in [5] and in [6]. For such 

methods, the variation of features has effects on them, for example, the method in [7] is composed of 

obtaining a clustering for each subset of features and selecting the m features with the highest relevance 

measure, which gains the results with lower K-means error than competitors. However, the method in [7] 

needs to spend much time due to have to calculate per subset of features. Similar to the [7], the method 

proposed in [8] has increasing demands for selecting features in data long with the rapid increase of the data 

size, thereby increasing the computational cost. 

(iii) Deep network architectures-based methods, such methods have become increasingly popular 

because of excellent ability of learning meaningful representations, e.g., the Deep Belief Networks [9], the 

Convolution Neural Networks [10]. Similarly, the [11] and the [12]. Deep network architectures-based 

methods show these outstanding advantages to capture variable relations since those hidden layers in neural 

networks are not simply to learn an identity function [13], more specifically, they can filter those redundant 

information from original data [14] so that the extracted representations become more compact [15]. For 

instance, sparse auto encoders are also commonly used to extract low-dimensional representations in high-

dimensional data [16]. L. Zhao [17], et al proposed that the multi-modal neural networks to discover 

informative and heterogeneous feature patterns from different feature groups. The multi-modal neural 

networks [17] learn advanced variables representations, but they require predefine loss function aiming at 

different task features. Whereas, it is really hard to predefine loss function for different applications. In 

addition, Zheng [18] developed the neural networks with three layers to discover those relation patterns from 

climate data. Although the network architectures of three layers in [18] achieve a compact encoding and gain 

the desired results, unfortunately, climate data is typical time series data, which is closely related to time. So 

those relation patterns captured by the [18] do not present the time characteristics in the four seasons. 

Motivation. The motivation for this work is to extract relational patterns from complex climate data.  

By exploring those relational patterns hidden in climate variables, some theoretical insights into climate 

evolution can be provided. As an important application, these patterns discovered are essential for exploring 

the relation between climate variation and greenhouse effect. Therefore, given that the time-series 

characteristics of climate data, this paper proposes a long short-term memory network to capture those 

relation patterns hidden in climate data. 

We summarize main contributions in this work. 

(i) Those architectures based on long short-term memory networks are better at treating climate time 

series data than other network architectures. 

(ii) Temporal variables are the main factor affecting climate evolution, followed by spatial variables. 

(iii) These captured trajectories in climate show a cyclical continuity within an annual, and exhibit a 

local smoothness in four seasons. 

2. THE PROPOSED MODEL 

Long short-term memory (LSTM) network is a special recurrent neural network (RNN). The difference 

from RNN is that LSTM introduces two concepts of gate mechanism and cell state. Although RNN is very 

sensitive to short-term input, it is much less effective for long-term input processing, whose of the 

disadvantage can be addressed by LSTM [19], because of introducing the three gate mechanisms: input gate, 

output gate, and forget gate, LSTM is better at treating long-term information. Clearly, this ability of LSTM 

to handle long-term information is more suitable for relational patterns extraction in climate data, since 

climate data is a long-term time series data. 

The proposed LSTM consists of input gate, output gate and forget gate, as shown in Fig. 1. Input gate 

is used to update the cell state, which accepts the current input xt, the output ht-1 of the previous stage and the 

cell state ct-1 in the hidden layer of the previous stage, together. The forget gate is responsible for deciding 

whether to save or discard information. Output gate obtains the current output ht and the current cell state ct 

after calculating, then ht and ct are used as the input at the next stage, together. Formally, the mathematical 

formulas of the update of an LSTM unit are given as following, 
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where  , tanh is activation function. w, b is weight and bias. it, ft, ct and ot represents input gate, forget gate, 

cell state and output gate, respectively. ht is used to store information. 

 

 

Fig. 1 – One cell of the LSTM memory block. 

 

Batch normalization (BN) has been widely used to increase the training speed for neural network and 

to distribute inputs stably without affecting the reduction of internal covariate shift [20]. The reduction of 

internal covariate shift has effects on the parameters of the previous layer as well as on the distribution of the 

input to each layer, for instance, training a network with a data stack with size n being input, the formula for 

BN is given in Eq. (2). 
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where un is mean feature in a batch. 2
n  is variance feature in a batch. BNx  represents normalize feature of 

samples.   is a constant to prevent the denominator from being zero. For the output of linear transformation, 

we used the formula in [21], as following 

( ).BN
i i iy x BN x  +   (3) 

Equation (3) represents the linear scale and shifts.  ,  is the pre-set parameters. 

2.1. Hyper parameters of the model 

Training the proposed LSTM means training the hyper parameters, including batch size, learning rate, 

etc. In order to ensure that LSTM can converge to a suitable value, meanwhile, to prevent over-fitting and 

under-fitting, the following hyper parameters were carefully studied since they have substantial effects on the 

training results. 

(1) Learning rate. Learning rate, denoted as lr , has a significant impact on the convergence of the 

model, for instance, learning rate is too large, which may cause that loss value fast decreases, so as to appear 
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over-fitting. Therefore, cross-validation is used to determine learning rate, i.e., lr ={1e−3, 1e−4, 1e−5, 

1e−6, 1e−7}. 

(2) Batch size. For the selection of batch size, local optimum may occur when batch size is too large, 

however, a small batch size introduces greater randomness, which difficulty achieves convergence. Smith 

[22, 23] et al show that for a fixed learning rate, there is an optimal batch size that can maximize test 

accuracy, moreover, batch size is positively correlated with learning rate and a training set scale, as shown in 

Fig. 2. According to Fig. 2, we dynamically adjust batch size in process of training. 

 

 

Fig. 2 – Selection of batch size [20, 21]. 

 

(3) Convergence judgment. Currently, it is difficult to have a general method to accurately determine 

whether neural networks have been well trained and are the optimal, while there are still some ways to judge 

whether neural networks have converged, so as to stop training at a suitable position. For example, one 

approach is to monitor the loss on the training and testing sets, i.e. observing training curves. When the 

training loss and testing loss remain in a relatively stable state and the gap of both hardly changes, we can 

consider networks to be well trained. 

2.2. Training of the model 

The training for LSTM is given in algorithm 1. For step 1 and step 2, the input sample set S is firstly 

divided into training set Strain, testing set Stest and validation set Sval. Dataset Strain and Stest are used for the 

parameter training and testing, respectively. Dataset Sval is use for verifying the model. The procedure 

between step 3 to step 13 performs parameter testing to get the optimal parameter opt, i.e., cross-validation 

of parameters. After obtaining the optimal opt, together, using training set Strain and opt trains LSTM. As for 

step 14 to step 20, during performing p iterations computation, there will stop LSTM training until it can 

convergence. Finally, the procedure given in step 21 to step 25 shows that once LSTM is well trained, 

validation set Sval is used to verify LSTM, and LSTM sends out the training accuracy Train_Acc(max) and 

the maximum validation accuracy Acc(max). 

Noting that in the initial batch size, according to Fig. 2 and the size of the input samples, we initialized 

an appropriate value for batch size, i.e., let batch_size be equal to 64. During training for LSTM, we 

dynamically adjust the value of batch_size, as shown in step 7 and step 8. 

 

Algorithm 1. Training for LSTM 

Input: sample set S, hyper parameters  , ,  , batch_size=64, iterative epoch Q, P; 

Output: training accuracy Train_Acc(max), maximum validation accuracy Acc(max); 

1 S is randomly divided into three subsets; 

2 Let  S=Sval + Stest + Strain ;  

3 for p=1 to P do: 

4      foreach  lr  in   

5             Train LSTM with dataset Strain ; 

6             Calculate training accuracy T_Acc= LSTM (Strain ; p; batch_size); 

7 Update parameters with Eq. (2) and Eq. (3); 

Adjust batch_size according to TrainAcc ; 

9             Test LSTM with dataset Stest ; 
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10             Calculate testing accuracy Testing_Acc = LSTM (Stest ; p; batch_size) ; 

11 end foreach 

12 end for 

13 Get the optimal value opt=arg max(Testing_Acc; lr; batch_size); 

14 for q=1 to Q do: 

15 Train LSTM with data set Strain and opt ; 

16 Calculate training accuracy Train_Acc(q) = LSTM(Strain; opt) ;  

17 Update parameters with Eq. (2) and Eq. (3); 

18 Verify LSTM with dataset Sval; 

19 Calculate validation accuracy Val_Acc(q) =LSTM(Sval) ; 

20 end for 

21 Select q so that qmax=arg max(Train_Acc(q)) ; 

22 Get the maximum training accuracy Train_Acc(max) in the qmax-th iteration ; 

23 Train_Acc(max)=LSMT(Strain; opt; qmax); 

24 Get the maximum validation accuracy Acc(max) =LSMT(Sval, qmax) ; 

25 Output Train_Acc(max), Acc(max); 

3. EXPERIMENTAL SETTINGS 

3.1. Dataset 

We selected the ECMWF climate data in an annul as the experiment dataset, with 512 dimensionalities 

and a data volume of 40000. Each dimensionalities is composed of eight variables at different spatial 

locations, including KM, KMLS, KH, KHLS, KHSFC, RI, 25(100 hPa), 27(100 hPa). For the detailed 

description of the ECMWF climate data, please see at https://atmosphere. copernicus.eu/  

The ECMWF climate dataset was divided into three subsets, of which of 60% of the data is used as the 

training subset to train the model, and 20% of the data is used as the testing subset to test those parameters of 

the model, and the remaining data is used as the validation set to verify the ability of the proposed model to 

extract relation patterns. 

3.2. Comparison methods and assessment metrics 

We compared the DLM [18] with the proposed LSTM, because the DLM [18] is used for relation 

patterns extraction in climate data. To have fair results, these parameters of the DLM observed in the 

corresponding literature were adopted. In addition, PCA [18] is also used as a comparison. For other 

parameters, their default values were used.  

For machine learning tasks, Receiver operating characteristic curve (ROC) and corresponding area 

under the curve (AUC) are often used as the evaluation metrics to evaluate the learning ability of methods. 

Hence, we used the AUC as assessment metric to assess the extracted precision of relation patterns. 

We implemented the corresponding algorithms of the three methods using Python 3.6 on Tensorflow 

framework in Linux operation system. Unless otherwise stated, our method and comparison method all ran 

on a single GPU. 

4. RESULTS 

In this section, experiment results were given, including extracted accuracy and the captured relation 

patterns. To further analyze the internal regular of climate, these captured relation patterns were visualized 

by using the low-dimensional representations. The detailed results are below. 

4.1. Mode testing 

Figure 3a presents the training, testing and validation accuracies of the proposed model on the training 

subset, testing subset and validation subset. It can be seen that when iteration epoch is equal to 8000, the 

model starts to converge so that the training, testing and validation accuracies no longer change, meanwhile, 
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the training, testing and validation accuracies are 0.9330, 0.9111 and 0.9007, respectively. Figure 3b displays 

the corresponding the changes of loss value. Clearly, the loss values also do not occur change when iteration 

epoch reaches 8000. Together, these results in Fig. 3 also indicate that the model did not appear over-fitting. 

 

           
(a)                                                                                                 (b) 

Fig. 3 – Results on training, testing and validation subsets. 

4.2. Accuracy 

Figure 4 displays the extracted accuracy of the three methods (our LSTM and two competitors). 

Results show that the proposed LSTM wins the two competitors in the extracted accuracy. The accuracy 

extracted by LSTM reaches 90.07%. While for the two competitors DLM and PCA, their extracted accuracy 

is 85.11% and 75.39%, respectively. These results indicate that the long short-term memory network method 

is better at treating time series data. 

 

 

Fig. 4 – Extracted accuracy. The results are the average of 100 independent experiments. 

4.3. Relation patterns extraction 

These extracted relation patterns were visualized by using the three-dimensional manner, as shown in 

Fig. 5. Low-dimensional visualized results show that the three methods can capture relation patterns from 

climate data. Nevertheless, these climate trajectories extracted by LSTM present more regular characteristics 

than that of extracted by the two competitors, i.e., these captured trajectories of climate present continuous 

periodic change in an annual through LSTM disposing in Fig. 5a. As for DLM in Fig. 5b and PCA in Fig. 5c, 

these captured trajectories of climate are weaker in the continuity of periodic change in an annual. These 

imply that the long short-term memory network method is capable of learning the deeper relation patterns in 

the time series data. Hence, LSTM can capture those desired relation patterns between climate variables, and 

those captured relation patterns show a degree of continuity and season layered characteristic what we expect. 

Some observations can be gained from Fig. 4 and Fig. 5: (i) through filtering the non-eigenvalue 

information from climate data, LSTM captures these advanced relation patterns, implying that the long short-

term memory network method is better at treating climate time series data than the other network 

architectures. 

(ii) These captured trajectories of climate present a cyclical continuity within an annual, meanwhile, 

these captured trajectories also have a local smoothness in the four seasons. 
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(iii) These captured trajectories of climate are more affected by time series than spatial series does, 

implying that for the two time series and spatial series set, the main factor affecting the evolution of climate 

is time, followed by spatial location. 

 

 

(a) patterns extracted by LSTM 

 

(b) patterns extracted by DLM 

 

(c) patterns extracted by PCA 

Fig. 5 – Results of patterns extraction. Three-dimensional representations of all data points produced by LSTM, DLM and PCA. 

Colours represent quarters of a year, i.e., first quarter (Q1) is purple, second (Q2) is blue, third (Q3) is green, fourth (Q4) is cyan. 

5. CONCLUSION 

In this work, the LSTM network is proposed to extract the relation patterns from climate data. 

Experiment results on the ECMWF climate dataset show that the proposed method outperforms the 

mainstream comparison methods in the extracted precision of relation patterns. We demonstrate that the 

trajectory of climate change shows a cyclical continuity within an annual cycle. More importantly, these 

trajectories of climate change are more affected by time series than spatial series does, implying that for the 

time series and spatial series, the main factor affecting the evolution of climate is time, followed by spatial 

location. In the future work, we will look at exploring the relation between climate change and carbon 

dioxide concentration, in order to provide theory insights for greenhouse effects. 
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