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Abstract. We study the Dirichlet problem of a singular k-Hessian equation with an eigenvalue parameter λ . We
prove that the problem has at least one nontrivial radial solution for each λ in an explicit eigenvalue interval.
Some results in the literature are generalized and improved.
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the following eigenvalue problem of the k-Hessian equation{
Sk(D2u) = λ f (|x|,−u) in Ω,

u = 0 on ∂Ω,
(1)

where Ω = {x ∈ Rn : |x|< 1}, λ is a positive parameter, f : [0,1]× [0,1) → [0,+∞) is a continuous function
and

lim
v→1−

f (r,v) = +∞, uniformly for r ∈ [0,1]. (2)

For k ∈ {1,2, · · · ,n}, Sk(D2u) is the k-Hessian operator, which denotes the k-th elementary symmetric function
of the eigenvalues for D2u, i.e.,

Sk(D2u) = Pk(Λ) = ∑
1≤i1<···<ik≤n

λi1λi2 · · ·λik ,

where Λ = (λ1,λ2, · · · ,λn) is the eigenvalues of the Hessian matrix D2u.
The k-Hessian equations arise from fluid mechanics, geometric problems and other applied subjects. For

instance, when k = n, the k-Hessian equations can describe the Weingarten curvature and the reflector shape
design. Recently, the radial solutions for the Dirichlet problems of the k-Hessian equations have been discussed
by many scholars, and some excellent results have been obtained. See [3–7, 12–20] and the references therein.
For example, in [18], the existence and uniqueness of nontrivial radial solutions to the following k-Hessian
problem {

Sk(D2u) = λ f (−u) in Ω,

u = 0 on ∂Ω,
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has been studied by the fixed point index in a cone, where the author assumed that λ is a large parameter, f
is a continuous function and may have k-superlinear growth at 0. Later, in [19], the same author continued to
consider the following k-Hessian problem{

Sk(D2u) = λH(|x|) f (−u) in Ω,

u = 0 on ∂Ω,
(3)

where f is a continuous function and may be singular at 0 with possible k-superlinear growth at ∞. She proved
that there exists an interval S ⊂ (0,+∞), such that the problem (3) has at least two nontrivial radial solutions
for any λ ∈ S. Recently, Zhang, Xu and Wu in [20] considered the following eigenvalue problem of k-Hessian
equation {

(−1)kS
1
k
k (D

2u) = λ f (|x|,u) in Ω,

u = 0 on ∂Ω,
(4)

where k ≤ n < 2k and f : C(B1 ×R/{0} → (0,+∞)) has a singularity at u = 0. By constructing the upper and
lower solutions and using the Schauder’s fixed point theorem, they proved that there exist two positive constants
λ1 < λ ∗ such that the problem (4) has at least one radial solution for any λ ∈ (λ1,λ

∗).
Notice that the eigenvalue intervals obtained in the above references are not explicit intervals. Motivated

by this, in this paper, we continue to study the eigenvalue problem of k-Hessian problem (1). The main result
of this paper is the following theorem.

THEOREM 1. Assume that (2) holds and there exists a continuous function h : [0,1]→ [0,∞) such that

limsup
v→0+

f (r,v)
vk = h(r), uniformly for r ∈ [0,1]. (5)

Then the problem (1) has at least one nontrivial radial solution for every λ ∈ E, where

E =

{(
0, 2knCk−1

n−1
kh∗

]
, if h∗ > 0,

(0,+∞), if h∗ = 0

and h∗ = max
r∈[0,1]

h(r).

Significantly, the eigenvalue interval we obtain is an explicit interval and the nonlinear term we deal with
is more general than those in some known results, because the nonlinear term f includes not only the case of
k-superlinear at v = 0 (h(r) = 0) but also some other interesting situations (h∗ > 0). Moreover, the nonlinear
term has a singularity at v = 1.

The proof of Theorem 1 will be presented in Section 2. In Section 3, we give an example to illustrate our
result.

2. PROOF OF THEOREM 1

In this section, we will give the proof of Theorem 1 by the following fixed point theorem in cones.

LEMMA 1 [9]. Let K be a cone in the Banach space X. Suppose that A and B are open bounded subsets
of X with AK ⊂ BK , AK ̸= /0, where AK = A∩K and BK = B∩K. Let T : BK → K be a completely continuous
operator such that

(H1) ∥T v∥ ≤ ∥v∥ for v ∈ ∂KA = (∂A)∩K,

(H2) there exists θ ∈ K \{0} such that v ̸= T v+ γθ for v ∈ ∂KB = (∂B)∩K and γ > 0.

Then T has at least one fixed point in BK \AK .
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Such method was used in [1, 2, 11] to study the periodic problem of differential equations. The proof of
Theorem 1 will be divided into a sequence of lemmas.

Let u(x) =−v(r), where r = |x|, then the problem (1) is transformed to the problem{
Ck−1

n−1(r
n−k(−v′)k)′ = krn−1λ f (r,v), r ∈ (0,1),

v′(0) = 0, v(1) = 0.
(6)

Let X =C[0,1] with the norm ∥v∥= sup
r∈[0,1]

|v(r)|. Define K to be a cone in X by

K = {v ∈ X : v(r)≥ 0, r ∈ [0,1] and min
r∈[σ ,1−σ ]

v(r)≥ σ∥v∥},

where σ is a positive constant with 0 < σ < 1
2 . Define

Ba = {v ∈ X : ∥v∥< a}, Ω
b = {v ∈ X : min

r∈[σ ,1−σ ]
v(r)< σb}.

Since the sets Ωb are unbounded for each b > 0, we can not use Lemma 1 to Ωb. However, we will be able
to apply Lemma 1, taking into account that for each c > b, the following relations hold:

LEMMA 2. Ωb
K = (Ωb ∩Bc)K and Ωb

K = (Ωb ∩Bc)K .

Proof. According to [8, Lemma 2.4] or [10, Lemma 2.5], we have the following properties

(p1) Ωb
K and Bb

K are open relative to K; (p2) Bσb
K ⊂ Ωb

K ⊂ Bb
K ;

(p3) v ∈ ∂KΩb if and only if min
r∈[σ ,1−σ ]

v(r) = σb;

(p4) if v ∈ ∂KΩb, then b ≥ v(r)≥ σb, r ∈ [σ ,1−σ ].

By (p2), the first equality can be obtained directly. Now we prove that the second equality holds. On the
one hand, notice that (Ωb ∩Bc)K ⊆ Ωb

K . On the other hand, by (p3), for any v ∈ Ωb
K , we have the following

inequality
σ∥v∥ ≤ min

r∈[σ ,1−σ ]
v(r)≤ σb < σc,

which means that v ∈ (Ωb ∩Bc)K ⊂ (Ωb ∩Bc)K . Thus Ωb
K ⊆ (Ωb ∩Bc)K . Taken together, we get the second

equality.

Define

(T v)(r) =
∫ 1

r

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1

λ f (s,v(s))ds
) 1

k
dt, v ∈ Ωb

K , r ∈ [0,1],

where 0 < b < 1. Notice that the fixed point v ∈ Ωb
K of T corresponds to a positive solution v of the problem

(6).

LEMMA 3. T : Ωb
K → K is a completely continuous operator.

Proof. For any v ∈ Ωb
K , similar to [6, Lemma 2.2], we can verify that

(T v)(r)≥ 0, (T v)′(r)≤ 0, (T v)′′(r)≤ 0, min
r∈[σ ,1−σ ]

T v(r)≥ σ∥T v∥,

which implies that T (Ωb
K)⊂ K. Moreover, similar to the analysis in the proof of [7, Theorem 1], we can prove

that T is a completely continuous operator.
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LEMMA 4. There exist positive constants a and b with 0 < a < σb < b < 1 such that

(C1) ∥T v∥ ≤ ∥v∥, for v ∈ ∂KBa;

(C2) there exists θ ∈ K \{0} such that v ̸= T v+ γθ , for v ∈ ∂KΩb and γ > 0;

(C3) Ba
K ⊂ Ωb

K .

Proof. By (5), for every λ ∈ E, we get that there exists a constant a with 0 < a < σ < 1 such that

λ f (r,v)≤ λh(r)vk ≤
2knCk−1

n−1

k
vk, for (r,v) ∈ [0,1]× [0,a].

Then, for any v ∈ ∂KBa, we have

∥T v∥= sup
r∈[0,1]

∫ 1

r

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1

λ f (s,v(s))ds
) 1

k
dt =

∫ 1

0

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1

λ f (s,v(s))ds
) 1

k
dt

≤
∫ 1

0

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1 2knCk−1

n−1

k
vkds

) 1
k
dt

≤
∫ 1

0

( k
Ck−1

n−1

tk−n
∫ t

0

2knCk−1
n−1ak

k
sn−1ds

) 1
k
dt =

∫ 1

0
2at dt = a = ∥v∥,

that is, (C1) is established.
Let θ ≡ 1 ∈ K \{0}, we claim that

v ̸= T v+ γ, ∀v ∈ ∂KΩ
b and γ > 0.

By contradiction, assume that there exist v0 ∈ ∂KΩb and γ0 > 0 such that v0 = T v0 + γ0. It follows from the
property (p4) that v0 satisfies

σb = σ∥v0∥ ≤ v0(r)≤ b, r ∈ [σ ,1−σ ].

By (2), for every λ ∈ E, we get that there exists a positive constant b ∈ ( a
σ
,1) such that

λ f (r,v)≥
2knCk−1

n−1

k(2σ −σ2)k vk, for all (r,v) ∈ [0,1]× [σb,b].

Then, for any r ∈ [σ ,1−σ ], it can be known that

v0(r) = T v0(r)+ γ0

=
∫ 1

r

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1

λ f (s,v0(s))ds
) 1

k
dt + γ0

≥
∫ 1

1−σ

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1

λ f (s,v0(s))ds
) 1

k
dt + γ0

≥
∫ 1

1−σ

( k
Ck−1

n−1

tk−n
∫ t

0
sn−1 2knCk−1

n−1vk
0

k(2σ −σ2)k ds
) 1

k
dt + γ0

≥
∫ 1

1−σ

( k
Ck−1

n−1

tk−n
∫ t

0

2knCk−1
n−1bk

k(2−σ)k sn−1ds
) 1

k
dt + γ0

=
∫ 1

1−σ

2b
2−σ

t dt + γ0 = σb+ γ0 > σb,

which contradicts (p3). Thus, (C2) is satisfied.
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According to the property (p2), we have

Ba
K ⊂ Bσb

K ⊂ Ω
b
K ,

that is, (C3) holds.

Finally, based on the above analysis and Lemma 1, we get that T has at least one positive fixed point
v ∈ Ωb

K \Ba
K , which satisfies

σb ≥ min
r∈[σ ,1−σ ]

v(r)≥ σ∥v∥ ≥ σa,

that is, the problem (6) has at least one positive solution v satisfying

b ≥ ∥v∥ ≥ a and σb ≥ min
r∈[σ ,1−σ ]

v(r)≥ σa.

The proof of Theorem 1 is finished.

3. EXAMPLE

In this section, we present an example to illustrate our main result.
Example 1. Consider the following Dirichlet problem{

Sk(D2u) = λa(|x|) (−u)2p

1−(−u)3q in Ω,

u = 0 on ∂Ω,
(7)

where Ω = {x ∈Rn : |x|< 1}, λ is a positive parameter, p and q are positive constants, and a : [0,1]→ [0,∞) is
a continuous function.

COROLLARY 1. The problem (7) has at least one nontrivial radial solution for every λ ∈ E, where

E =

{(
0, 2knCk−1

n−1
ka∗

]
, if 2p = k,

(0,+∞), if 2p > k,

where a∗ = max
r∈[0,1]

a(r)> 0.

Proof. The problem (7) can be regarded as a special form of (1), where

f (r,v) = a(r)
v2p

1− v3q .

Obviously, we have
lim

v→1−
f (r,v) = +∞, uniformly for r ∈ [0,1],

and

limsup
v→0+

f (r,v)
vk = h(r) =

{
0 if 2p > k,
a(r) if 2p = k,

uniformly for r ∈ [0,1],

which imply that (2) and (5) are satisfied. Then, Theorem 1 guarantees that the results in Corollary 1 hold.
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