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Abstract. This paper suggests an approach to process and model the data obtained in biomonitoring 

studies. The approach is validated on data obtained from biomonitoring studies performed in the 

Republic of Moldova in 2015. Using the preliminary data, the decomposition on the basis of the 

pollution spectrum for the most polluted and cleanest sites is first carried out. The deviations of model 

predictions from the actual measurements are considered. A correlation analysis is next performed to 

evidence the correlation of two geographical coordinates with chemical elements. Factor analysis and 

regression analysis are applied to highlight the nonlinear mechanisms specific to the obtained data. A 

multilayer neural network-based model is derived to describe the relationship of the pollution rank to 

the geographic coordinates. The predictive capabilities of the model are represented graphically. 
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1. INTRODUCTION 

Monitoring of air pollution using bioindicators is emerging as a potentially effective and more 

economical alternative performing by direct ambient air measurements [1]. It has been shown in [2] that 

mosses and lichens, in spite of all disadvantages, are good tools for air pollution monitoring. Moss 

biomonitoring is nowadays a part of the pollution monitoring programmes in most European countries as it 

gives evidence of the anthropogenic impact in urban and rural areas due to industrial activity, mining, 

transport and fossil fuel combustion, as pointed out in the recent papers [3–8], which discuss the atmospheric 

heavy metal deposition, the spatial patterns and the temporal trends in Europe [3], the air pollution in the 

Republic of Moldova [4, 5], the neutron activation analysis in assessing the pollution by trace elements in 

certain Polish national parks [6], the analysis of the spatial data measured in a heavily polluted region of the 

Czech-Polish border [7, 8], and the atmospheric deposition in Georgia [9]. 

Factor Analysis (FA) and Principal Component Analysis (PCA) are usually applied to evaluate the 

biomonitoring data [7, 9, 10]. Both FCA and PCA have some limitations because of their statistical features. 

For example, the weaknesses of FA consist in the ambiguity of the estimation of factor parameters and the 

need to specify the number of common factors before performing the analysis [7]. 

Building upon authors’ recent papers on biomonitoring discussed above [4–10] and nonlinear modeling 

of various systems focusing on tensor product-based model transformation applied to tower crane systems 

[11], unified clustering applied to various data sets [12, 13], evolving fuzzy models applied to shape memory 
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alloy wire actuators [14], and linear and nonlinear observers for strip winding systems [15], this paper 

suggests an approach to describe the biomonitoring data obtained for moss samples collected in the Republic 

of Moldova in the 2015/2016 moss survey. The correlation analysis is first applied to reduce the number of 

determined chemical elements to two factors. The data smoothing is next performed using a discrete cosine 

transform. The paper also suggests an algorithm to calculate the number of linearly independent (basis) 

vectors in which the matrix itself can be decomposed. A multilayer neural network-based model is derived to 

describe the relationship of the pollution rank to the geographic coordinates. 

The approach suggested in this paper is important with respect to the state-of-the-art briefly discussed 

above because of the advantages of the three techniques applied. These techniques, namely FA, regression 

analysis and neural networks, highlight the nonlinear mechanisms specific to the obtained data. 

The rest of the paper is organized as follows in the order of the steps of the approach pointed out 

above: the factor analysis is described in the next section. The regression analysis and the neural network 

application are presented in Section 3. The predictive capabilities of the resulting model are discussed in 

terms of the modeling results given in Section 4. The conclusions are highlighted in Section 5. 

2. FACTOR ANALYSIS 

Preprocessing the data shows that the “pollution spectra”ranked in descending order of the total 

pollution load line up in a neat sequence illustrated in Figs. 1 and 2 given in [16]. This ranking leads to a list 

of data collection sites, and a part the list is exemplified in the right-hand parts of Figs. 1 and 2 [16]. 

Each “fingerprint” or spectrum of representation of each of the 32 elements with minor local extremes 

has a clear decreasing trend from elements representing the earth’s crust (Ca, Al, Mg, Na) to trace elements 

present in small amounts (U, Th). At the same time, as the decrease of the total pollutant load from Singerei 

to Donduseni, the spectra firstly decrease, and secondly become flatter. 

The generally accepted pollutant load index (PLI) is next replaced by a rank distribution, which is 

determined unequivocally as follows: the rank is an integer serial number of a sampling point in the above 

given ordered list. Assuming that the rank of matrix of the input data has a dimension of 2, according to the 

number of selected eigenvalues, it leads to a pair of eigenvectors, which form the basis according to Fig. 3 

and Table 1 given in [16]. 

The vector X(R) is decomposed as follows as a linear combination of the two eigenvectors b1 and b2: 

,)( 2211 bbX FFR +=  (1) 

where F1 and F2 are the coefficients of the linear combinations. Fig. 4 [16] gives examples of the 

decomposition of experimental data in terms of the basis for most clean and most polluted data collection 

sites. 

According to Fig. 4 (b) [16], the only significant and visible discrepancy between the experimental 

measurement and the model expansion are noticed only for Mg. All intermediate data collection sites with 

pollution ranks from 2 to 33 are laid out according to the basis in a similar way with no less quality. 

Without exception, all spectrum deconvolution methods include at least two types of non-uniqueness, 

namely the scale one and the rotation one. Scale non-uniqueness implies that in any blind recognition 

method, even the spectrum with perfect resolution without reference to a specific concentration is determined 

at best with an accuracy of an unknown proportionality factor. The rotational non-uniqueness means that 

basis rotation through Euler angles can lead to both mixing and separation of individual absorption bands. It 

is theoretically impossible to separate them according to certain basic spectra using only algebraic 

techniques, without involving additional information, e.g. chemical information. 

The brief description of the algorithm that implements the Moore-Penrose transform will be given as 

follows. This transform allows movement from some existing initial basis to a meaningful basis that will 

satisfy the formulated physicochemical constraints of the model. For example, this may be the requirement 

of the law of conservation of matter or the fulfillment of certain kinetic equations. 

In this case, the idea is to reduce the two-factor task to just one-factor, so that the first factor changes 

from 1 to 0 as the pollution rank increases, and the second one is its complement to 1. 

According to [17–19], a pseudoinverse matrix C+ of the matrix C satisfies the following relations: 
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, CCCC =+
 (2) 

, +++ =CCCC  (3) 

, ) ( ++ = CCCC
T

 (4) 

,)( CCCC ++ =T
 (5) 

where T indicates matrix transposition. For any matrix, its pseudoinverse exists and is unique. For a square 

nondegenerate matrix C, the pseudoinverse matrix corresponds to the inverse one 1−
C : 

.1−+ =CC  (6) 

If A is a matrix of full column rank, i.e. all columns are linearly independent, then 

.)( 1 TT
AAAA −+ =  (7) 

If A is a full string rank matrix, then 

.) ( 1
AAAA

−+ = T
 (8) 

It is convenient to assume that the wavelength sweep of the spectra is oriented horizontally, the set of 

basis vectors of the reference spectra is also horizontal, and the mixing matrix C is stretched vertically. 

Therefore: 

.T

oldoldSCD  (9) 

The approximate equal sign in (9) means that the error matrix is neglected. The mixing matrix Cold is 

obtained in a rather arbitrary way, in the course of solving a system of linear equations with an arbitrarily 

chosen basis of eigenvectors 
T

oldS  according to Frobenius. In addition to permutation arbitrariness, this basis 

also has a large-scale uncertainty and, most importantly, a pivotal ambiguity. Thus, this leads to reaching the 

minimum mutual presence of spectral lines in different standards, but this does not mean that the pseudo-

standards considered in this paper are in fact the spectra of individual substances. They can also be their 

linear combinations, and cannot be identified at “blind recognition”. 

However, if some information about the kinetics of the processes occurring in a mixed system is 

available, this allows for the calculation of the expected calculated time sweep Cnew for each of the individual 

substances. This sweep needs to correspond to the new basis to maintain the observed pattern of changes in 

the total spectra over time, and (9) is transformed into 

.T

newnew

T

oldold SCSCD =  (10) 

The objective is to find a linear transformation matrix W that can transform the existing old basis Cold 

into the desired one Cnew making use of the still unknown new 
T

newS  basis, which expansion will give the 

“correct” dependences of concentrations on time. For this purpose, the left- and right-hand terms of (10) are 

multiplied by the pseudoinverse matrix 
+

newC  leading to: 

.)( T

new

T

newnewnew

T

oldoldnew SSCCSCC == ++
 (11) 

Substituting 
+

newC  in the left-hand term of (11) in terms of the expansion formula (9), it is obtained that 

.)( 1 T

oldoldnew

T

newnew

T

new SCCCCS
−=  (12) 

The linear transformation matrix W (i.e. related to the transition from the basis), which gives a certain 

expansion to the current basis, in which will give a meaningful kinetic picture, is carried out by an 

elementary algebraic transformation according to Moore-Penrose. This transformation is advantageous as it 

does not require the expenditure of serious computing resources and the use of capricious iterative 

procedures of minimization and fitting. The formula to calculate W is 

.)( 1

oldnew

T

newnew CCCCW
−=  (13) 
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Thus, (12) and (13) lead to the expression of the transition: 

. T

old

T

new SWS =  (14) 

This one step (i.e. without any iterations) transformation proves to be useful. The application of the 

Moore-Penrose transformation led to obtaining such a variant of the basis, which corresponds to the simplest 

and most visual form of the mixing matrix C. In this paper, the mixing matrix consists of only two columns, 

which are also linearly dependent, and the general expression of this matrix is 

.][ }2,1{,...1 max == SRRRScC  (15) 

The value of an element of the second column is always just the addition of the first element to 1. As 

the pollution factor decreases from 1 to 0, the value of the element of the second column in parallel increases 

from 0 to 1: 

,121 =+ RR cc  (16) 

,/1)( max11 RRRFcR −  (17) 

./)( max22 RRRFcR   (18) 

As shown in (17) in (18) in a rough approximation, it can be assumed that the factors F1(R) and F2(R) 

linearly increase and decrease, respectively, as the serial number (rank) i = 1…m changes in the list of the 

most polluted (in the opposite direction – the cleanest) cities of the Republic of Moldova. Therefore, the 

model curve of the rank dependence of the pollution rank factor F1(R) and the additional purity rank factor 

F2(R) can be successfully approximated using the following formulae that do not have a special physical 

meaning, but describe sufficiently well the experiment: 

,)(
2)(

101 ReRF R −+= +−
 (19) 

),(1)( 12 RFRF −=  (20) 

where 53.00 = , 47.01 = , 008.0= , 2.1−=  and 016.0= . 

The rank dependences of the mixing matrix components of the most polluted site (Singerei) to the 

cleanest site (Donduseni) are illustrated in Fig. 1, which shows the almost perfect agreement between the 

results of decomposition of the experimental data and the predictions of the model. 

 

 

Fig. 1 – Rank dependences of the mixing matrix components from the most polluted site (Singerei) to the cleanest site (Donduseni). 

All 1088 = 34  32 results of measurement are described with satisfactory accuracy using a one-factor 

dependence on the basis of two support vectors according to the results given in this section. The support 

vectors are summarized in Table 1 [16]. 
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Table 2 given in [16] offers the deviations of model predictions from actual measurements. Each cell 

contains data for a specific locality (row) and a specific chemical element (column). For visual appearance, 

the cells are colored green for deviations not exceeding 15%, light green for deviations in the range from 

15% to 30%, yellow for the range of 30% to 50%, and pink for the range of 50% to 100%. Finally, cells with 

a deviation of more than 100%, which were 12 and represents about one percent of the experimental data are 

colored bright red. Table 3 given in [16] summarizes the number of cells that fell within a certain deviation 

range. 

3. REGRESSION ANALYSIS AND NEURAL NETWORK APPLICATION 

In the next step, the data obtained for 34 points is spread to the entire territory, i.e. a geographic 

forecast is made. If the correlation diagram is expanded from a 32  32 matrix (by the number of elements) to 

34  34 by adding two geographical coordinates, it will become obvious that neither latitude nor longitude 

correlates with any of the chemical elements, nor does any of the element concentrations show geographical 

preferences. This is suggestively shown in Table 4. 

Similarly, the diagrams of the change in the rank factor F1 (abscissa) from geographic latitude and 

longitude (ordinate) given in Fig. 2 demonstrate a multifold character. This sophisticates selection of a 

function for the regression dependence. 

 

Fig. 2 – Diagrams showing the variability of geographic latitude and longitude as the pollution rank factor F1 changes. 

Therefore, traditional methods of regression analysis are completely useless within the framework of 

the problem under study. Fundamentally new opportunities are provided by artificial intelligence techniques 

such as machine learning techniques, which include neural networks. It is no need to know all the details of 

process, in order to write out flawed regression equation, even if it is multifactorial, with high degree 

polynomials and numerous cross terms. Instead, using the multilayer neural network architecture with 

backpropagation of error algorithm involved in training, it will be proved in this section that it is possible to 

digitally represent all the hidden patterns as delicately as possible. Nevertheless, such a model would actually 

have predictive and statistical power greater than experimenter could take into account. 

With a small amount of data, it is necessary to have a model whose parameters will be optimized. The 

model describes a set of assumptions and the main task is to choose the most appropriate one. The model 

should cover the possible options which can be met in practice. With a small amount of data, the model will 

produce a large variance for the output parameters, but as the amount of data increases, the variance will 

decrease and the forecast will be more unambiguous. 

The model cannot take into account all factors. It is created by a person and puts limited possibilities 

into it. Such a model is more suitable as an element of more complex calculations. The general structure of a 

neural network-based model is presented in Fig. 3 focusing on the two inputs represented by the pollution 

rank factor F1 and the purity rank factor F2, and the output (or the response) represented by the pollution rank 

R actually applied here. 
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The question related to the number of layers and perceptrons (i.e. neurons) in a layer is not simple and 

it is usually solved heuristically. The neural network considered in this paper was configured with the 

parameters 2:9:9:1, i.e. 2 neurons in the input layer, two hidden layers each with 9 neurons and one neuron in 

the output layer, as suggestively illustrated in Fig. 3. The activation functions are of sigmoid type. 
 

 

  
Fig. 3 – Structure of a multilayer neural network with two 

internal (hidden) layers, applied to “unfold” the folded 

relationship of pollution rank with geographic coordinates. 

Fig. 4 – Pollution rank R versus pollution rank factor F1  

computed by the neural network on the  

testing data and the linear trend. 

Figure 4 gives a sample of the neural network results on the testing data, namely the nonlinear input-
output map R(F1). In other words, Fig. 4 gives the correspondence diagram of the actually determined values 

of the input-output-map R(F1) and the model predictions produced by the neural network. 

The coefficient of determination is the proportion of the explained variance of the deviations of the 
dependent variable from its mean value. The dependent variable is explained (predicted) using a function of 
the explanatory variables, in our case, geographic coordinates. The coefficient of determination is analogous 
to the square of the correlation coefficient between the dependent variable and its predictive values using 
explanatory variables. 

Figure 4 suggestively shows that high coefficient of determination values were attained by the neural 
network. Thus, with the help of a neural network as a representative artificial intelligence technique, artificial 
intelligence provides results that regression analysis could not cope with. 

4. MODELING RESULTS 

The predictive capabilities of the resulting model will be discussed in this section. The diagrams 
presented in Figs. 5 to 8 show the estimated data for the entire territory of the Republic of Moldova (and 
partly beyond). In fact, a square grid was used for coordinates from 27.0°N to 30.0°N and from 43.9°W to 
48.5°W. 

The results will be different if other neural network architectures will be trained, validated and tested 
on this application. Such architectures and recent applications include FPGA-implementation of deep neural 
networks and associated learning algorithms [20], support vector machines in functional verification [21], 
deep neural networks [22, 23], neuro-fuzzy models [24], and evolving fuzzy models [14, 25, 26]. However, 
the conclusions will be generally kept. 

5. CONCLUSIONS 

This paper proposed an approach to describe the biomonitoring data obtained for moss samples 
collected in the Republic of Moldova. Several data processing techniques such as correlation analysis, factor 
analysis and regression analysis were applied prior to train a multilayer neural network-based model in the 
framework of the popular machine learning techniques. 

The results presented in the paper are encouraging. They prove that regression analysis can be 
considered as useless tool in biomonitoring data description. Therefore, a multilayer neural network-based 
was developed and its capabilities in terms of the geographic distribution of the pollution rank were 
presented. According to performed data processing, only one factor describing the association of chemical 
elements was highlighted. 
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Fig. 5 − The values of the pollution rank R calculated using a 

neural network for coordinates on a 20  20 grid (relative step 

in latitude and longitude 0.05 of the range for each coordinate). 

Fig. 6 − Diagram similar to Fig. 5, but rotated by 90°. 

 

  

Fig. 7 − Colored contour diagram for the geographic 

distribution of the pollution rank. 
Fig. 8 − Contour diagram of level lines for the geographic 

distribution of the pollution rank. 

The limitation of authors’ approach is the need to measure sufficient data to train the neural network-

based model. This will be mitigated in the future research by the derivation of neural network-based models 

considering architectures that work with small datasets. 
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