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Abstract. It is important to improve the accuracy of the levitation system operation assessment, 

effectively guide the maintenance work of maglev trains, guarantee the safe and stable operation of 

the maglev system, and avoid the waste of resources. This paper proposes a levitation system 

condition evaluation method based on weighted Hellinger distance, which can accurately assess the 

levitation system state. And the feasibility and effectiveness of the algorithm are verified by using 

levitation system degradation simulation data. 
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1. INTRODUCTION 

The levitation system condition assessment, i.e., the implementation of online monitoring through the 

historical information and operation condition data of the levitation system, integrates these data and 

information to judge the operation condition of maglev trains and arrange suitable overhaul work. Therefore, 

how to improve the accuracy of the levitation system operation assessment, effectively guide the maglev 

train maintenance work, ensure the safe and stable operation of the maglev system, and avoid the waste of 

resources is a pressing problem.  

Chen et al. proposed a multiple belief rule base (MBRB) for the health assessment of large complex 

electromechanical systems [1], reducing the impact of uncertainty on system assessment from the expert 

reliability discount model. In combination with sensor data, degradation status and health indicator 

prediction, [2, 3] uses information selection and information fusion methods for multi-sensor information to 

monitor and predict the status of industrial systems, and [4] uses Bayesian methods for parameter estimation 

and degradation analysis. The method based on deep learning can automatically extract the "rules" between 

input and output samples through learning and training, and memorize the "rules" in the form of weights to 

achieve state evaluation and prediction. For example, long short term memory (LSTM) has recently been 

widely used in system state assessment and life prediction [5]. In the evaluation of the blade degradation 

model of the saw blade, Li et al. used the model based on depth convolution neural network to replace the 

physical model [6], which greatly reduced the cost. 

Amgen et al. used the improved time series algorithm to fill in the missing data [7], which solved the 

problem of incomplete test data. Chen Junxun et al. proposed a complex system health state assessment 

method based on EMD-SVD and Matian system [8] and successfully applied it to the bearing health state 

assessment. To solve the problem of a single data source based on vibration signal analysis method, Shan 

Zenghai et al. proposed a health status assessment method for hydraulic pump based on multi-sensor 

information fusion and multi granularity cascade forest model [9]. 

After feature extraction and processing of bearing signals, Yin Aijun and others combined discrete 

Frechet distance to make a state evaluation curve [10], which can find early equipment failures earlier and 

assess bearing health status. Dong Shaojiang et al. obtained low dimensional features by feature extraction 

and dimensionality reduction, and constructed Euclidean distance in the low dimensional feature space as the 

bearing performance degradation index [11], using this index to achieve bearing data labeling and establish a 
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life state recognition model. After Chen Haitao and others established the state assessment model, they 

converted the assessment problem into a classification problem by calculating the distance between the point 

and the hyperplane [12], making the assessment result more in line with the actual situation. For research on 

clustering algorithms, references [13] and [14] can be consulted. 

Mingtao et al. designed a transformer condition assessment method based on the DGA framework [15], 

which predicted the period of equipment potential fault to apparent fault by comparing the similarity between 

the time series to be tested and the historical fault series. Yin Aijun and others put forward Wigner Ville 

time-frequency distribution similarity evaluation index based on complex wavelet transform to achieve a 

quantitative evaluation of time-frequency distribution similarity [16], which is applied to early bearing state 

evaluation. Zhang Yan et al. proposed a life prediction method based on similarity of degradation features 

for life prediction of aero-engine simulation data [17]. 

In comparison to our previous work [18, 19], a condition evaluation study on aerospace engines is 

conducted using weighted Hellinger distance. The dataset for aerospace engines was relatively small while 

having a larger number of sensors, eliminating the need for feature extraction or similar operations. 

However, in the case of the levitation system, there is a larger volume of operational data available, but with 

a relatively smaller number of sensors such as gap, acceleration, current, and voltage. Therefore, it is 

necessary to perform feature extraction to expand the sensor state data and provide a more comprehensive 

reflection of the system's condition. In the levitation system condition assessment, the problem of the data 

degradation trend is not obvious due to multiple operating conditions of the levitation system that needs to be 

solved. Due to the different operating conditions, the multidimensional variable data of the levitation system 

will change with the different operating conditions. And the greater the difference in operating conditions, 

the greater the difference of variables, which leads to the change in the degradation trend of variables and 

makes the degradation law of the system not obvious. 

To address the above problems, this paper investigates a levitation system state assessment method 

based on the weighted Hellinger distance, which improves the reliability of the obtained health indicators. 

The main contributions are as follows: 

(1) Addressing the issue of low-dimensional levitation state data, statistical feature extraction is 

performed on the original state data to obtain a higher-dimensional feature vector that comprehensively 

reflects the levitation system's condition. 

(2) To eliminate the influence of dimensions and different operating conditions on the state features, a 

classification-based standardization process is applied to the feature data. 

(3) By filtering based on monotonicity, feature sequences with significant degradation trends are 

selected. Additionally, a health index is constructed using weighted Hellinger distance to holistically 

represent the health condition of the levitation system. Furthermore, degradation simulation experiments are 

conducted to validate the feasibility and effectiveness of the proposed method. 

2. CONDITION EVALUATION METHOD BASED ON WEIGHTED HELLINGER DISTANCE 

During the operation of the levitation system, the measurements from the same sensor exhibit 

significant variations under different operating conditions, and the dimensionality of the raw sensor data is 

relatively low. Therefore, before performing condition evaluation, feature extraction and pre-processing are 

required. In this section, statistical features of the data are extracted, and a standardized processing based on 

the classification of operating conditions is performed to eliminate the effects of dimensionality and different 

operating conditions. Based on this, feature sequences with evident degradation trends are selected based on 

their monotonicity as criteria for constructing health indicators. 

2.1. Feature extraction and pre-processing 

In the process of state evaluation for the levitation system, due to its long service life spanning several 

decades, the real-time degradation level in the short term is minimal and difficult to assess. Therefore, state 

evaluation is typically conducted at regular time intervals. For example, weekly data can be used for a 

weekly evaluation, or monthly data can be used for a monthly evaluation. In this paper, this time interval is 

referred to as the evaluation period. Within an evaluation period, it is crucial to extract features from the 
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massive amount of sensor data that reflect the system's state during that evaluation period, considering that 

the levitation system is a long-duration, continuous operation system that generates a large volume of sensor 

data. Additionally, the types of sensor data available for the levitation system are relatively limited, including 

only gap, acceleration, and current sensor data, which may not fully capture the system's state during an 

evaluation period. Hence, a feature extraction method based on statistical measures is employed to compute 

various statistical features using the raw sensor data. 

Assuming that in the thi  evaluation period, a subset of uniformly distributed operating condition data, 

as well as raw sensor data of gap, acceleration, and current sensors denoted as dataset iD , have been 

obtained through appropriate interval selection within the evaluation period: 
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where, 1, , nt t  represent the time points during an evaluation period when data is selected at uniform 

intervals, and the number of points for each evaluation period remains the same. 1
, ,, ,

j j

m
i t i tO O  represent the 

different operational conditions of the levitation system at time jt  during the thi  evaluation period. 

1
, ,, ,

j j

l
i t i tS S  represent the corresponding raw sensor data of the levitation system at time jt  during the thi  

evaluation period. 

After obtaining dataset iD , the statistical features can be computed from this data. As a result, the 

feature vector id  corresponding to the thi  evaluation period is obtained: 
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where, 1, , m
i iO O  represent statistical features calculated using the operating condition data in iD , typically 

selecting mean feature to reflect the main operating conditions of the system within that evaluation period; 
1,1 1,, , k
i iS S  represent various statistical features, such as mean, minimum, maximum, and standard 

deviation, calculated using the raw sensor data 
1

1 1
, ,, ,

ni t i tS S . Therefore, for the i th evaluation period, the 

condition can be represented by m  operating condition features and k l  state features. 

For N  evaluation periods, it is possible to construct the feature set C  as shown below: 
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In order to facilitate further explanation, let the equation (3) be expressed as follows: 
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where, 
1
1 1, , klC C  correspond to 1,1 1, ,1 ,

1 1 1 1, , , , , ,k l l kS S S S  in equation (3) respectively. It can be observed 

that after the statistical feature extraction, the condition of the levitation system in each evaluation period can 

be fully characterized by the operational and status features.  
Since each state feature data in equation (4) is derived from calculating statistical quantities based on 

raw sensor data, they have different units. Therefore, it is necessary to perform standardization before using 

them for state evaluation. Additionally, during the operation of the levitation system, the data obtained by 

sensors at each moment is always influenced by the operating conditions. Hence, a feature standardization 

method based on the classification of operating conditions is adopted. This method clusters all operational 

features into several standard operating conditions and then standardizes the corresponding state features for 

each standard operating condition. This approach helps reduce the impact of different operating conditions 

on the state features. 

Assuming that there are K  standard operating conditions 1, , Kco co , equation (4) can be 

reformulated: 

1

1 1

,1

1 1 1 1
1 1 1 1 1 1

,

1 1

,1

1 1

,

K

K K

co

m kl
co co

co n

i m kl i
i co i i i i co

co

N m kl N
K N co N N N N co

co n

co C O O C C C

C O O C C C

co C O O C C C

 
 

    
        

 
  = = = 
  

 
      

     
 
  

c

c

c

C c

c

c

c






 

(5) 

where, 1 1 1,1 ,, ,co co nc c  represent feature vectors from 1, , Nc c , respectively, which are assigned to the 

standard operating condition 1co , 
1

K

j
j

N n
=

= ; 
i
coC  represents the category of the standard operating 

condition to which iC  belongs,  1, ,i
co KC co co . 

The standardized processing based on the classification of operating conditions can be described: 
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where, ,i js  represents the thj  state feature in the thi  standard operating condition, ,i j  and ,i j  represent the 

mean and standard deviation of ,i js , respectively; ,i js  represents the normalized value. 

By using equation (6) to standardize the features in equation (5), the influence of operating conditions 

can be eliminated. Therefore, a set of standardized features C , excluding the operating condition 

characteristics, can be obtained: 
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where, 1, , Nc c  represent the standardized state feature vectors corresponding to each evaluation period, 
1, , kl

c c  represent the feature sequences corresponding to each standardized state feature. 

Furthermore, in the obtained feature set C , not every feature sequence exhibits a clear degradation 

trend. Therefore, to perform state evaluation more efficiently and reduce computational complexity, it is 

necessary to further filter out feature sequences with indistinct degradation trends. A commonly used method 

is to manually select feature sequences with obvious degradation trends by directly observing their changes. 

However, this method is subjective to some extent. To address this issue, the monotonicity of each feature 

sequence can be calculated, and feature sequences can be selected based on their monotonicity. The formula 

for calculating the monotonicity of each feature sequence in a feature set C  is as follows: 
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where, Tre j  represents the monotonicity of the thj  feature sequence, and ( )sgn   represents the sign function. 

If there are multiple feature sets C , the monotonicity of the thj  feature sequence is obtained by taking the 

average. 
By applying equation (8) to calculate the monotonicity of all feature sequences, the feature sequences 

with higher monotonicity are selected to obtain the filtered feature set 
C : 
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where, 
* *
1 , , Nc c  represent the feature vectors corresponding to each evaluation period after filtering, 

1* *, , M
c c  represent the filtered feature sequences,    ( )1* * 1, , , ,M kl M kl c c c c . 

At this point, the filtered feature sequences will exhibit a clear monotonic trend, which can effectively 

reflect the degradation trend of the system. These sequences can be utilized in subsequent state evaluation 

methods. 

2.2. Condition evaluation method based on Hellinger distance 

After obtaining the feature sequences with clear degradation trends through the aforementioned feature 

extraction and preprocessing, it is necessary to construct a health indicator using these sequences to 

comprehensively reflect the degradation state of the system. In this section, the weighted Hellinger distance 

is used to build the health indicator.  

In probability and statistics, the Hellinger distance is used to measure the similarity between two 

probability distributions. Assuming there are two probability distributions,  
[ ]i i n
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=  and  
[ ]i i n
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= , the 

Hellinger distance between them is defined as follows: 
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For the filtered feature sequences 
T

* * *
1

j j j
NC C =  c , starting from the first evaluation period, a 

segment of refN  sequences is selected as the reference sequence. This reference sequence is denoted as: 
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At this point, it can be assumed that the reference sequence reflects the system's state during initial 
normal operation, indicating that these reference sequences represent a healthy state of the system. A larger 
calculated Hellinger distance indicates a smaller similarity to the reference sequence, suggesting a greater 
degree of degradation in the system during that evaluation period. Conversely, a smaller calculated Hellinger 
distance indicates a higher similarity to the reference sequence, indicating a lesser degree of degradation in 
the system during that evaluation period. 

Simultaneously, each feature represents a local analysis of the system and cannot capture the complete 
information about the overall degradation of the system. Therefore, it is necessary to integrate the various 
features corresponding to the same evaluation period to comprehensively describe the degradation of the 
system and obtain an accurate system health state curve. For the thi  evaluation period, the weighted 
Hellinger distance for each feature is calculated by assigning weights based on the ratio of the Hellinger 
distance value of each feature to the sum of the Hellinger distance values of all features. The weighted 
Hellinger distances for all features are then calculated, serving as the health indicator HIi  that 

comprehensively represents the system’s state for the thi  evaluation period: 
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In addition, to evaluate the effectiveness of the state evaluation method, the overall fitting trend 2R  
and root mean square error RMSE  are selected as evaluation metrics: 
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where, HIi  represents the true health indicator value of the system for the thi  evaluation period, and HI  
represents the mean value of the true health indicator values. A smaller value of RMSE  indicates a better 
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evaluation performance, while a larger value indicates a poorer evaluation performance. The closer 
2F  is to 1, 

the more the constructed health indicator resembles the true health indicator. 

Finally, the condition evaluation algorithm can be summarized as follows. 
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Fig. 1 – Flow chart of condition evaluation. 

Algorithm 1：Levitation system condition evaluation based on weighted Hellinger distance 

Input:   original operating condition data and state data of the levitation system 

Output:   health index HIi  

1: Equally spaced selection, a data set iD  for each evaluation period according to equation (1) is 

constructed; 

2: Perform statistical feature extraction on iD  according to equation (2); 

3: Construct feature dataset C  for all evaluation periods according to equations (3) and (4); 

4: Utilize the K-means clustering algorithm to cluster the operating conditions and obtain the 

dataset as shown in equation (5); 

5: Normalize the dataset shown in equation (5) according to equation (6) to obtain the 

standardized feature dataset C  as shown in equation (7);  

6: Calculate the monotonicity of feature sequences according to equation (8), filter out the 

feature sequences with a strong monotonic trend, and obtain the feature dataset 


C  as shown 

in equation (9);  

7: Calculate the health index HIi  according to equations (10)−(14); 

8: Return HIi . 
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3. CONDITION EVALUATION PROCESS AND VERIFICATION 

The condition evaluation process is illustrated in Fig. 1. First, the feature extraction is performed on the 

equally spaced and statistically calculated data sets obtained from the original data of the levitation system, 

resulting in the feature data set for all evaluation periods. Then, the operating condition features are used for 

classification and standardization, resulting in the standardized feature data. Subsequently, the feature data 

with better degradation trends is selected based on monotonicity. Finally, the weighted Hellinger distance is 

used to calculate the health index. 

3.1. Acquisition of degradation simulation data of levitation system 

Because the maglev train has been put into operation for a short time, the existing operation line data is 

difficult to verify the state assessment method. This chapter is based on the levitation system model of 

Changsha Maglev Express Line Maglev train parameters, simulates the controller degradation to generate 

simulation data, and verifies the effectiveness of this method through simulation data. 

 
Table 1 

Changsha Maglev Express Train Single Point Parameter Table 

Changsha Maglev Express Train Single Point Parameter Table 

Parameter Parameter value Parameter Parameter value 

m 535 kg M 665 kg 

R 0.92 Ω A 0.038 m2 

L 1.36 m d 0.348 m 

a 0.028 m z0 0.01 m 

N 360 i0 28.0 A 

 5106 m/s 0 410−7 H/m 

 

In this section, the controller degradation is taken as the background. The HI calculated according to 

the following equation (17) is used as the real HI in the equations (15) and (16) to evaluate the HI calculation 

method based on the weighted Hellinger distance, where 
1

400
a =  and 0.006b = : 

( )HI 1 1 b t
t a e = + −  (17) 

Finally, the maximum number of cycles to degrade the controller from 1 to 0 is 1000. 

500 samples are generated through simulation experiments, and randomly divided into 400 training 

samples and 100 test samples by cross validation method. Each sample is the data of levitation system 

degradation from different degradation time (from normal to failure) to failure.  

3.2. Experimental results and analysis 

By clustering historical operating conditions with the K-means clustering algorithm, it is found that the 

clustering results of three types of operating conditions of simulation data are 30 core conditions. 

The Fig. 2 and Fig. 3 show the curve of the 8th and 10th features in the 165th group of training samples. 

It can be seen that the 10th feature has a significant downward trend, while the 8th feature has no significant 

change. And because of the influence of different operating conditions, the characteristic curve appears 

obvious vibration phenomenon, which blurs the changing trend of the characteristics. 
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Fig. 2 – The 8th feature curve in the 165th training sample. Fig. 3 – The 10th feature curve in the 165th training sample. 

 

The feature is standardized by equation (6). Fig. 4 and Fig. 5 show the 8th and 10th feature curves after 

standardization respectively. Compared with Fig. 2 and Fig. 3, the feature fluctuation after standardization is 

significantly reduced and has an obvious change trend. It is verified that this method can effectively 

eliminate the influence of different core conditions on features, and also make the changing trend of features 

more obvious. 

 

  
Fig. 4 – The 8th feature curve after standardization. Fig. 5 – The 10th feature curve after standardization. 

 

For the generated simulation data, take 100 groups of data randomly divided into historical data and 

400 groups of data as test data, and use the weighted Hellinger distance to obtain the estimated HI curve of a 

test sample, as shown in the Fig. 6. 

 

  
Fig. 6 – Weighted Hellinger distance curve of a test sample. Fig. 7 – The estimated HI and the real HI in a test sample. 

 

As shown in Fig. 6, with the increase in data degradation, the state curve of the test sample based on 

the weighted Hellinger distance gradually degrades to 0. As time goes on, the performance of the levitation 

system gradually degrades until failure occurs (Hellinger Distance = threshold). The estimated HI is 

calculated by the equation (14) to obtain the control system degradation curve in [0,1] interval, and the real 

HI and the estimated HI curve are filtered by the moving average filtering method with a window of 21 

(10 HIs for the current HI and 10 HIs for the front and back). Figure 7 shows the comparison between the 

estimated HI and the real HI in a test sample. 
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It can be seen from Fig. 7 that there is a certain difference between the values of the two HIs at the 

same cycle number. This is because this section adds real noise to the gap, current and acceleration of the 

simulation model, resulting in some differences between the changing trend of the system HI and that of the 

controller HI under the cyclic influence of the real noise.  

Figure 8 and Figure 9 show the overall fitting trend 2R  and root mean square error RMSE of 400 

training samples, respectively. The maximum RMSE is 0.0772, the minimum RMSE is 0.0644, and the 

average RMSE is 0.0708. The maximum 2R  is 0.9382, the minimum 2R  is 0.9023, and the average value of 
2R  is 0.9217. This shows that the HI obtained by the method in this chapter is close to the real HI. 

 

  
Fig. 8 – Overall fitting trend R2 of 400 training samples. Fig. 9 – Root mean square error RMSE of 400 training samples. 

4. CONCLUSION 

Aiming at the problem of levitation system state evaluation, this paper proposes a state evaluation 

method based on weighted Hellinger distance. Firstly, K-means is used to cluster the operating conditions of 

the levitation system, and the cluster center of the clustering results is taken as the standard core state. In 

order to solve the problem that the measurement size of HI is different under different operating conditions, 

the feature sequence is converted to the feature sequence under the standard core state after standardization. 

The weighted Hellinger distance is used to obtain the estimated HI. The simulation results show that the 

method is effective. 
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